期刊文献+

基于RBF网络的动力系统Lyapunov指数的计算方法 被引量:4

An Algorithm for Computing Lyapunov Exponents of a Dynamical System Based on RBF Neural Networks
下载PDF
导出
摘要 提出一种基于径向基函数 (RBF)神经网络的动力系统Lyapunov指数计算方法 ,设计了一个RBF网络结构 ,推导了基于RBF网络的Lyapunov指数计算公式 .仿真实验表明 ,与其它现有方法相比 ,此方法计算精度较高 ,收敛速度较快 ,而且只需要较少的样本数据量 .本方法能更准确、更快速地计算动力系统的Lya punov指数 . An algorithm for computing Lyapunov exponents of a dynamical system based on radial basis function(RBF) neural networks is proposed. An RBF network structure is designed. The formula of the Lyapunov exponents based on an RBF network is derived. Simulations show that compared with the other existing algorithms, the proposed algorithm has higher accuracy and convergence speed, and it needs much less observed samples. It is demonstrated that the proposed algorithm can compute the Lyapunov exponents of a dynamical system more accurately and rapidly.
出处 《信息与控制》 CSCD 北大核心 2004年第5期523-526,共4页 Information and Control
关键词 LYAPUNOV指数 RBF神经网络 动力系统辨识 非线性系统 Lyapunov exponents RBF(radial basis function) neural networks dynamical systems identification nonlinear system
  • 相关文献

参考文献8

  • 1[1]Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from a time series [ J]. Physica D, 1985, 16(3 ) :285 ~317.
  • 2[2]Brown R, Bryant P, Abarbanel H D I. Computing the Lyapunov exponents of a dynamical system from observed time series [ J ].Physical Review A. 1991. 43(6): 2787 ~2806.
  • 3张青贵.从观察数据确定李雅普诺夫指数谱算法的一种改进[J].系统工程与电子技术,1998,20(9):66-70. 被引量:3
  • 4[4]Oiwa N N, Fiedler-Ferrara N. A fast algorithm for estimating Lyapunov exponents from time series [J]. Physics Letter A, 1998,246(1) :117 ~121.
  • 5[5]Gencay R, Dechert W D. An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system [ J]. Physica D, 1992, 59(2) :142 ~157
  • 6马军海,陈予恕,刘曾荣.动力系统实测数据的Lyapunov指数的矩阵算法[J].应用数学和力学,1999,20(9):919-927. 被引量:11
  • 7[7]Adachi M, Kotani M. Identification of chaotic dynamical systems with back-propagation neural networks [ J ]. IEICE Transactions Fundamentals, 1994, E77-A( 1 ): 324~334.
  • 8[8]Gencay R, Liu T. Nonlinear modeling and prediction with feedforward and recurrent networks [ J]. Physica D, 1997, 108 (1) :119~ 134

二级参考文献5

  • 1马军海 陈予恕.高斯分布的随机数对动力系统实测数据判值影响的分析研究[J].非线性动力学学报,1997,4(1):25-33.
  • 2Zuo Binwu,Phys D,1995年,85卷,485页
  • 3Shun Guanwu,Phys Lett A,1995年,197卷,1期,287页
  • 4Yu Quanhe,Phys Lett A,1992年,170卷,1期,29页
  • 5马军海,陈予恕.相位随机化的分布规律对实测数据判值影响的分析[J].非线性动力学学报,1997,4(1):25-33. 被引量:3

共引文献12

同被引文献50

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部