摘要
用数论中同余和整除的方法证明了:如果a1,a2,Λ,am为互不相同的整数,而(bj,cj)(j=1,2,Λ,n)为互不相同的整数对,且cj≠0(j=1,2,Λ,n),则多项式f(x)在超级数环内有且仅有m2+2mn个根。从而将日格列维奇A·Б·,彼德罗夫Н·Н·的结论推广到了一个一般的情形。
The conclusion is drawn that, if integer numbers a_1,a_2,Λ,a_m are different from one anther, even integer numbers (b_j,c_j)(j=1,2,Λ,n) are different from one anther and c_j≠0(j=1,2,Λ,n),then polynomial f(x) has and only has m^2+2mn different super number roots, by the method of exactly divisible and congruence. This conclusion be extended to a widespread case than the conclusion of Jiglevich.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第10期64-66,78,共4页
Journal of Chongqing University
基金
河南省教育厅基金资助项目(2000110005)
关键词
多项式
根
整除
超级数
polynomial
root
exactly divisible
super number