期刊文献+

生物降解型交联PVP材料的制备和性能 被引量:2

Preparation and performance of biodegradable crosslinked PVP materials
下载PDF
导出
摘要 合成了一种具有双烯丙基的聚乙二醇和聚乳酸三嵌段共聚物(PLA-b-PEG-b-PLA)的生物可降解交联剂,并以偶氮二异丁氰(AIBN)为引发剂与N-乙烯基吡咯烷酮(NVP)交联制备了一种新型可降解交联膜材料。研究了丙交酯和PEG的投料比对交联剂粘度的影响和交联剂含量和分子量对膜材料的吸水率、接触角和力学强度的影响,初步研究了交联膜材料的降解性能。结果表明:随着丙交酯含量的增加,交联剂的特性粘度增加;随着交联剂含量的增加,膜材料的吸水率减小,接触角增大,拉伸模量增加,断裂伸长率先增加后减小;随着交联剂分子量的增加,膜材料的吸水率和接触角均有增加;对降解性能的研究表明,在降解初期膜材料的质量损失率线性地增加,在降解后期剧烈增加。 A series of biodegradable crosslinking agents, di-acrylate of polyethylene glycol and polylactides (PLA-b-PEG-b-PLA) tri-block copolymer, were synthesized. And then the novel biodegradable crosslinked PVP membrane materials were prepared by radical polymerization with biodegradable crosslinking agents and N-vinyl pyrrolidone (NVP) using azoisobutyronitrile (AIBN) as initiator. The performance of PVP membrane materials was investigated. The results showed that the intrinsic viscosity of crosslinking agents would be regulated by changing the ratio of lactide to PEG. The water absorption would decrease, while the contact angle and the tensile module would increase with increasing the content of crosslinking agents, but extension at break would increase at first and decrease at last. The water absorption and the contact angle would increase with increasing the molecule weights of crosslinking agents. In the degradation process, the mass-loss rate of the materials showed specific original kinetic in the initial duration, but it increased dramatically at last.
机构地区 暨南大学
出处 《材料研究学报》 EI CAS CSCD 北大核心 2004年第5期511-516,共6页 Chinese Journal of Materials Research
基金 国家自然科学基金30170272 九七三项目G199054306 国家八六三计划新材料领域2001AA625050 广东省科技项目重大专项A302020104资助项目
关键词 有机高分子材料 生物材料 生物降解 交联PVP 性能 Biodegradation Contact angle Crosslinking Elastic moduli Membranes Viscosity Water absorption
  • 相关文献

参考文献16

  • 1[1]J.A.Stammen, S.Williams, D.N.Ku, R.E.Guldberg, Biomaterials, 22(8), 799(2001)
  • 2[2]A.D.Pozzo, L.Vanini, M.Fagnoni, Carbohydrate Polymers, 42(2), 201(2000)
  • 3[3]A.B.Lugao, S.O.Rogero, S.M.Malmonge, Radiation Physics and Chemistry, 63(3~6), 543(2002)
  • 4[6]M.M.Tunney, S.P.Gorman, Biomaterials, 23(23), 4601(2002)
  • 5[7]M.K.Chun, C.S.Cho, H.K.Choi, Journal of Controlled Release, 81(3), 327(2002)
  • 6[8]G.Alberto, F.Fernando, B.Paloma, M.Rebuelta, C.Alejandro, Biomaterials, 21, 915(2000)
  • 7[12]CHEN Jianhai, CHEN Kun, M,Shagufla, Acta Pharmaceutica Sinica, 35(8), 613(2000)(陈建海,陈昆,M,Shagufla,中国药学学报,35(8),613(2000))
  • 8[13]A.S.Sawhney, P.P. Chandrashekhar, J.A.Hubbell, Macromolecules, 26(4), 581~587(1993)
  • 9[14]J.Tessmara, A.Mikosb, A.Gopferich, Biomaterials, 24, 4475(2003)
  • 10[15]W.N.Chen, W.J.Luo, S.G.Wang, J.Z.Bei, Polymers for Advanced Technologies, 14(3~5), 245(2003)

同被引文献33

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部