期刊文献+

混沌序列的模糊神经网络预测 被引量:2

Using a Fuzzy Neural Network to Predict Chaotic Time Series
下载PDF
导出
摘要 提出了一种针对混沌序列预测的T-S模糊神经网络。这种T-S模糊神经网络与传统的T-S模糊神经网络相比在不影响预测精度的前提下极大的减少了神经网络的节点数。同时利用基于混沌动态量的BP算法对神经网络进行学习,提高了收敛速度和预测精度。应用此T-S模糊神经网络和相应的BP学习算法,对Ma-ckey-Glass混沌时间序列进行了预测,与传统的的T-S模糊神经网络相比得到了更好的结果,验证了该方法的有效性。 In this paper the authors present a T-S neurofuzzy network to predict chaotic serial. The proposed neurofuzzy network has as precision as traditional neurofuzzy network, but it considerably reduce the number of point. At the same time the authors sue improved BP arithmetic and boost the time of constringency. Using the T-S eurofuzzy network and it's arithmetic to predict Mackey-Glass chaotic time serial, we receive better result and prove that the method that proposed in this paper is valid.
机构地区 哈尔滨工程大学
出处 《弹箭与制导学报》 CSCD 北大核心 2003年第4期52-54,58,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 黑龙江省自然科学基金(F00-07)
关键词 混沌序列 T-S模糊神经网络 BP算法 收敛 预测精度 T-S neurofuzzy network chaotic, BP arithmetic
  • 相关文献

参考文献8

  • 1Shihua Chen, Jinhu Lu. Synchronization of an unceretain unified chaotic system via adaptive control[J]. Chao,Solitons and Fractals.2002,1;643-647.
  • 2Wang C ,Ge SS. Adaptive synchronization of uncertain chaotic system via backstepping design[J]. Chao, Solitons and Fractals.2001;12:1199-1206.
  • 3Takagi T,Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans on Systems ,Man,and Cybernetics,1985,15(1);116-132.
  • 4H,Tshi buchi,M,Nii, Fuzzy regression analysis by neural networks with non-symmetric fuzzy number weights, Proc, Internet[J]. Conf on neural Network,Vol,2,1996,pp.1191-1196.
  • 5孙增圻,徐红兵.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版),1997,37(3):76-80. 被引量:85
  • 6李翔,陈增强,袁著祉.混沌机制在T-S模型模糊神经网络的系统辨识研究[J].控制与决策,2001,16(4):504-506. 被引量:16
  • 7R.J.S.Jang,C.-T.Sun, Neuro-fuzzy modeling and control[J]. Proc. of the IEEE 83(3)(1995) 378-406.
  • 8L.X.Wang,J.M.Mendel, Generating fuzzy rules by learning form example,IEEE Trans[J]. Systwems Man Cybernet.22960(1992)1414-11427.

二级参考文献6

共引文献99

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部