期刊文献+

两种生态型东南景天锌吸收与分布特性的研究 被引量:11

Study on zinc uptake and distribution in zinc hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance
下载PDF
导出
摘要 采用水培试验,研究了非超积累和超积累两种生态型东南景天吸收、分配和转运锌(Zn)的特点。结果表明:两种生态型植物不仅在生长速度上对Zn浓度的反应差异显著,而且在Zn吸收与分配特性上也有明显差异。非超积累生态型的最适生长浓度为0.001mmol/L,在此Zn水平下,生物量随处理时间基本呈直线性增长;而超积累生态型的最适生长浓度为1.0mmol/L,生物量在处理前16d呈直线性增长,以后趋缓。非超积累生态型地上部的最大Zn含量远低于超积累生态型;而根部的最大Zn含量,非超积累生态型显著大于超积累生态型。Zn在非超积累生态型细胞壁和可溶部分中的含量差异不显著,在细胞器与膜部分的含量相对较低,而Zn在超积累生态型细胞壁中含量最高,其次是细胞的可溶部分。综合分析认为:超积累生态型东南景天比非超积累生态型具有更强的Zn积累和耐受能力,前者可能是后者在高Zn环境中长期进化的结果。 Characteristics of plant growth and uptake and distribution of zinc (Zn) in Zn hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance in response to Zn concentration were compared by solution culture experiments and significant differences were found between the two ecotypes. The optimum Zn concentration for growth of Zn hyperaccumulating ecotype is 1.0 mmol/L Zn, at which dry weight of the plant increased linearly with time in initial 16 days; thereafter, the plant growth rate decreased gradually. In contrast, the optimum Zn concentration for growth of non-hyperaccumulating ecotype is 0.001 mmol/L. At this external Zn level growth of the plant dry weight increased linearly in whole period. The maximum Zn concentration in the shoots of Zn hyperaccumulator was much greater than in that of non-hyperaccumulator, but an inverse relationship between the two ecotypes was found when their Zn concentrations in roots were compared. In Zn hyperaccumulating plant, Zn concentrations in different plant cell fractions were in the following order: cell wall>cytosol>cell organelle/membrane system, while in non-hyperaccumulating plant, cell wall and cytosol contained Zn at similar level, which was higher than that in cell organelle/membrane system. It is suggested that the Zn hyperaccumulating ecotype was formed as a result of long time adaptation and evolution in Zn-enriched environment.
出处 《浙江农业大学学报》 CAS CSCD 北大核心 2003年第6期614-620,共7页
基金 国家自然科学基金资助项目(20277035).
关键词 生态型 东南景天 吸收特性 分布特性 水培试验 ZN 重金属污染 ecotype zinc Sedum alfredii Hance
  • 相关文献

参考文献12

  • 1HE Zhen-li, ZHOU Qi-xing, XIE Zheng-miao (何振立,周启星,谢正苗). Soil-Chemical Balances of Pollution and Beneficial Elements (污染及有益元素的土壤化学平衡) [M]. Beijing: China Environmental Science Press, 1998. 362-364. (in Chinese)
  • 2龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762. 被引量:294
  • 3SHENZhen-guo LIUYOU-liang(沈振国 刘友良).Progress in the Study on the Plants that Hyperaccumulate Heavy Metal[J].植物生理学通讯,1998,34(2):133-139.
  • 4Salt D E, Blayock M, Nanda Kurnar N P B A, et al.Phytoremediation: A noval strategy for the removal of toxic metals from the environment using plants[J].Bio/Techology, 1995,13 : 468-474.
  • 5YANGXiao-e LONGXinxian NIWu-zheng etal(杨肖娥 龙新宪 倪吾钟 等).Sedum alfredii Hance—A New Zinc Hyperaccumulating Plant Species Native to China [J].科学通报,2002,47(13):1003-1006.
  • 6Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean[J]. Plant Physiology. 1980,65:480-482.
  • 7杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20-26. 被引量:120
  • 8Allen D L, Jarrell W M. Proton and Copper Absorption to Maize and Soybean Root Cell Walls[J]. Plant Physiology, 1989,89 : 823-832.
  • 9Turner R G. The Accumulation of Zinc by Subcellular Fractions of Roots of Agrostis tenuis Sibit ,in relationto Zinc Tolerance[J]. New Phytologist, 1972,72 : 671-675.
  • 10Nishizono H, Ichikawa H, Suziki S, et al. The Role of the Root Cell Wall in the Heavy Metal Tolerance ofAthyrium yokoscense [J]. Plant and Soil, 1987, 10115-20.

二级参考文献60

  • 1[1]Acar YB and Alshawabkeh AN.1993.Principles of electrokinetic remediation.Environ Sci Technol,27(13):2638~2647
  • 2[2]Baker AJM,Reeves RD and McGrath SP.1991. In situ deconta-mination of heavy metal polluted soils using crops of metal-accumulating plants - a feasibility study.In:Olfenbuttel RF ed.In situ Bioreclamation.Boston:Butterworth-Heinemann.539~544,600~605
  • 3[3]Baker AJM,Reeves RD and Hajar ASM.1994a.Heavy metal accumulation and tolerance in british populations of the metallophyte Thlaspi caerulescens J & C.Presl(Brassicaceae).New Phytol,127:61~68
  • 4[4]Baker AJM,McGrath SP,Sidoli CMD,et al.1994b.The possibility of in situ heavy metal decontamination of polluted soils using metal-accumulating plants.Rea Conserv Rec,11:41~49
  • 5[5]Banuelos GS,Cardon G,Mackey B,et al.1993.Boron and selenium removal in boron-laden soils by four sprinkier irrigated plant species.J Environ Qual,22:786~792
  • 6[6]Blaylock MJ,Salt DE,Dushenkov S,et al.1997.Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents.Environ Sci Technol,31:860~865
  • 7[7]Boisson J,Mench M,Vangronsveld J,et al.1999.Immobilization of trace metals and arsenic by different soil additives evaluation by means of chemical extractions.Commun Soil Plant Anal,30(3-4):365~387
  • 8[8]Brown GA and Elliott HA.1992.Influence of electrolytes on EDTA extraction of Pb from polluted soil.Water Air Soil Poll,62:157~168
  • 9[9]Brown SL,Chaney RL,Angle JS,et al.1994.Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium-contaminated soil.J Environ Qual,23:1151~1157
  • 10[10]Brown SL,Chaney RL,Angle JS,et al.1995a.Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution.Soil Sci Soc Am J,59:125~133

共引文献411

同被引文献246

引证文献11

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部