期刊文献+

多网格法解总变分问题及在医学图像增强中的应用 被引量:3

Total Variation Regularization Solved by Multi-grid Method and Applied in Image Denoising
下载PDF
导出
摘要 传统的各向同性平滑方法 ,如拉普拉斯平滑方法 ,虽然能去掉图像的噪声 ,但同时也可能使图像的边缘信息模糊 ,甚至丢失。针对这种情况 ,基于总变分的平滑方法得到重视 ,因为该方法可以在去除噪声的同时 ,对边缘的信息进行增强 ,但是由于基于总变分的平滑方法计算量大 ,且用松弛法迭代的收敛速度比较慢 ,因此引入了多网格预处理的共轭梯度算法来解总变分问题。计算结果表明 ,共轭梯度法的收敛速度明显高于松弛法 ,而采用多网格法收敛速度还可以得到进一步提高。为说明该方法的优点 。 The isotropic diffusion method for image denoising such as those based on the Laplace regularization can smooth out the noise in image, but it may simultaneously blur the edge or boundary of the objects. In order to overcome this problem, recently many researchers pay attention to the smooth method based on the total variation (TV) regularization because it can reserve or even enhance the information of edge when smoothing the noise. However, since equation system deduced by TV method is a strongly nonlinear system, the convergence rate is very slow when solving TV equations using relaxation method. So in this paper, we introduce the multi-grid algorithm and conjugate gradient (CG) algorithm to solve this system. By smoothing out the noise in the echocardiograpgic images, numerical results indicate that the convergence rate of CG is fast, the algorithm of multi-grid has more efficiency and the image can be recovered with satisfied result even contamination of strong noise. As a result, the multi-grid algorithm is a good alternative method for solving the TV questions.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第7期787-792,共6页 Journal of Image and Graphics
基金 自然科学基金项目 (3 0 170 2 64 )
关键词 医学图像 图像增强 总变分 多网格 共轭梯度 平滑法 total variation, multi-grid method, conjugate gradient method
  • 相关文献

参考文献11

  • 1Groetsch C W. Inwerse problems in the mathematical science[M]. Wieshaden, Germany: Vieweg, 1993.
  • 2Tikonov A N. Regularization of incorrectly posed problems[J].Soviet Mathematics Dokl,1963.4:1624-1627.
  • 3Acar R, Vogel C R. Analysis of total variation penalty methods[J].Inverse Problems, 1994,10:1217-1229.
  • 4Dobson D, Santosa F. Recovery of blocky images from noisy and blurred data[J]. Society for Industrial and Applied Mathematics Journal Application Mathematics, 1996,(56):1181-1198.
  • 5Rudin L I. Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physical D:nontinear Phenomena.1992,60(1-4):259-268.
  • 6Dennis J, Schnabel R B. Numerical methods for unconstrained optimization and nonlinear equations[M]. Englewood Cliffs NJ,USA: Prentce-Hall,1993.
  • 7Vogel C R, Oman M E. Iterative methods for total variation denoising[J]. Society for Industrial and Applied Mathematics Journal Seiety Computer, 1996,7(1) :27-238.
  • 8German D, Reynolds G. Constrained image restoration and the recovery of discontinuities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(3): 367-383.
  • 9German D, Yang C. Nonlinear image recovery with half-quadratic regularization [J]. IEEE Transactions on Image Processing, 1995,4(7) : 932-945.
  • 10Charbonnier P, Feraud L B, Aubert G. Deterministic edgepreserving regularization in computed imaging[J]. IEEE Transactions on Image Processing,1997,6(2):298-311.

同被引文献24

  • 1谢美华,王正明.基于各向异性扩散方程的图像对比度增强方法[J].量子电子学报,2006,23(2):129-134. 被引量:7
  • 2Burkhardt CB. Speckle in ultrasound B-mode scans[J].IEEE Trans Sonics Ultrason, 1978, SU-25( 1 ): 1 - 6.
  • 3Loupas T, Mcdicken W N, Allan P L. An adaptive weighted median illter for speckle suppression in medical ultrasonic images [J]. IEEE Trans Circuits Syst, 1989,36(1): 129 - 135.
  • 4Bamber J C, Daft C. Adaptive filtering for reduction of speckle in ultrasound pulse-echo images[J]. Ultrasonics, 1986,24(1) :41 - 44.
  • 5Bamber J C, Philps J V. Real-time implementation of coherent speckle suppression in B-scan images[J]. Ultrasonics, 1991,29(5):218 -224.
  • 6Donoho DL. De-noisingbysoft-thresholding[J].IEEE Trans Inform Theory, 1995,41(5) :613 - 627.
  • 7Khaled Z Abd-Elmoniem, et al. Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion [J]. IEEE Transactions on Biomedical Engineering,2002,49(9) :997 - 1014.
  • 8Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations[M]. Springer-Verlag, volume 147 of Applied Mathematical Sciences,2001.
  • 9Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans Pattern Anal Machine Intell, 1990,12(7) :629- 639.
  • 10Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM J Numer Anal, 1992,29(3):845-866.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部