期刊文献+

非线性两点边值问题有唯一解的几个判据 被引量:1

Several Criterions of the Nonlinear Two—Point Boundary Value Problems with Unique Solution
下载PDF
导出
摘要 本文研究二阶非线性常微分文程 x″=f(t,x,x′) 在区间[0,1]上的第一和第二边值问题,在主要假设f_x≥—β(t)≥—,β(t),—a≤f_x′≤α(1+|x′|)的情形下,给出了第一、第二边值问题有唯一解的充分条件。 In this paper the first and second boundary problems in the interval [0, 1] of a second order nonlinear ordinary differential equation x'= f(t,x,x')are studied. In ease of f_x≥β(t)≥—, β(t)and—αf_x'≤α(1+|x'|) mainly, the sufficient conditions of the first and second boundary value problems with unique solution are given.
出处 《海南大学学报(自然科学版)》 CAS 1993年第2期7-14,共8页 Natural Science Journal of Hainan University
关键词 常微分方程 两点边值问题 非线性 boundary value problem, existence, uniqueness
  • 相关文献

同被引文献7

  • 1库连喜,杨明波.非线性两点边值问题存在唯一解的两个判据[J].河南师范大学学报(自然科学版),1994,22(2):17-20. 被引量:1
  • 2Beberns J W. A subfunction approach to a boundary value problem for ordinary differential equation[J]. Pacific j.Math, 1963, (13) : 1053- 1066.
  • 3Less M. Discrete methods for nonlinear two point boundary value problems, Numerical Solutions of Partial Differential Equations[M]. Bramble J H ed. New York: Academic Press, 1966:59-72.
  • 4Tippett J. An existence-uniqueness theorem for two-point boundary value problems[J]. SIAM J Math, Anal 1974,5(1) :153-157.
  • 5Gaines R E, Mawhin J. Conincidence, degree and nonlinear equations[A]. Lecture Note in Mathematics[C]. New York: Springer Verlag, 1977,568: 60- 61.
  • 6Heidel J W. Second-order nonlinear boundary value problem [J]. Journal of Mathematical Analysis and Applications, 19 ?4,48 : 493 - 503.
  • 7Prother M H, Weinberger H F. Maximum principles in differential equations[M]. New Jersey:Prentice-Hall,Englewood Cliffs, 1967 : 1 - 2.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部