期刊文献+

论空间技术在药用植物研究上的应用 被引量:27

Utilization of spaceflight technology on medicinal plant study
下载PDF
导出
摘要 中药现代化的发展需要空间技术的应用。国外空间植物学的研究已经由传统的利用空间条件进行育种、观察染色体变化实验阶段发展到植物生长与人类空间生存一体化研究阶段。我国空间植物学的研究还处于起始阶段 ,实验多在空间育种方面 ,对返回地面的材料进行了较为深入的生长发育、生理生化、遗传变异等基础研究。关于植物搭载设备的研究还比较薄弱 ,植物在太空生长方面的研究还处于空白状态。我国空间技术在药用植物上的应用研究有一定的特色和优势。小型生物舱可以用来搭载药用植物的种子 ,种子太空飞行后可通过仪器检测将种子区分成微重力组和太空射线击中组 ,但遗传育种以及有效成分变化方面的研究明显不足。未来的空间药用植物学研究一方面要探讨药用植物在空间生命支持系统中的作用 ,另一方面还应探讨中药在宇航员飞行过程中的保健作用。 Utilization of spaceflight technology will benefit the modernization of Traditional Chinese Medicine study. Many countries, such as USA or Russia, have conducted extensive experimental research with plants in the regenerative life-support system in space stations as well as the research on breeding or chromosomal aberration after spaceflight. The space botany is still in its preliminary stage in our country. Research has mainly been focused on breeding under space-environment. In addition, many experiments have been conducted with the spaceflown plants to investigate the growth, development, biochemical and physiological changes, as well as the inheritance and variation. Little has been done with regard to the facility development to contain the spaceflying seeds and no research has been reported on plant growth in spacecrafts. Medicinal plant study has certain characteristics and advantages in our country where small biological vessels are developed for the spaceflown seeds, which are then distinguished to microgravity group and radiation exposed group with analytical instrument. However, research has been carried out in medicinal plant breeding or inheritance. In future research, more effort should be directed to the study of medicinal plants as an important link of a future biological life support system as well as to the health care of astronauts by. [
出处 《中国中药杂志》 CAS CSCD 北大核心 2004年第7期611-614,共4页 China Journal of Chinese Materia Medica
关键词 空间技术 药用植物 生命支持系统 空间植物学 spaceflight technology medicinal plant biological life support system
  • 相关文献

参考文献30

  • 1[1]Barlow P W. Living plant systems: how robust are they in the absence of gravity? Adv Space Res, 1999, 23(12):1975.
  • 2[2]Kostov P, Ivanova Dr T, Dandolov I, et al. Adaptive environmental control for optimal results during plant microgravity experiments. Acta Astronautica, 2002, 51(1-9):213.
  • 3[3]Bingham G E. Diagnostic equipment for the Greenhous 2 on the Russian Space Station Mir. Asgse Bulletin, 1994, 8(1):84.
  • 4[4]Monje O, Bingham G E, Carman J G, et al. Gas exchange measurements aboard Mir. Adv Space Res, 2000, 26(2):303.
  • 5[5]Levine H G, Anderson K F, Krikorian A D. The ‘gaseous' environment in sealed bric-100vc canisters flown on ‘MIR' with embryogenic daylily cell cultures. Adv Space Res, 2000, 26(2):307.
  • 6[6]Freeman M. Challenges of human space exploration. Praxis publishing, UK, 2000. 259.
  • 7[7]Heyenga A G, Forsman A, Stodieck L S, et al. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions. Adv Space Res, 2000, 26(2):299.
  • 8[8]Kitaya Y, Kawai M, Tsuruyama J, et al. The effect of gravity on surface temperature and net photosynthetic rate of plant leaves. Adv Space Res, 2001, 28(4):659.
  • 9[9]Levine L H, Heyenga A G, Levine H G, et al. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment. Phytochemistry, 2001, 57:57.
  • 10[10]Kuznetsov O A, Brown C S, Levine H G, et al. Composition and physical properties of starch in microgravity-grown plants. Adv Space Res, 2001, 28(4):651.

二级参考文献90

共引文献318

同被引文献269

引证文献27

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部