期刊文献+

静电场作用下双势阱分子隧道效应的猝灭及能级裂距的非线性特性研究 被引量:4

The study on quenching of the tunneling and nonlinear characteristic of energy splitting in double-well molecules with dc electric fields
原文传递
导出
摘要 讨论了在静电场作用下 ,双势阱分子中波函数随外加静电场定域的动态过程 ,以及能级裂距与外加静电场的关系 .证明了静电场作用后 ,能级裂距既受隧道效应的影响 ,又受外加静电场的影响 .所加静电场较小时与外场强度呈非线性关系 ,当外加静电场较大时 ,Stark效应对能级裂距的影响占了主导地位 ,使能级裂距随外加静电场线性地增大 . In this paper we investigate the dynamic process of the localized wave function in double_well molecules using dc electric field and the relation between energy splitting and dc electric field. It is demonstrated that the energy splitting is affected by the tunneling and dc electric field, and the splitting of energy_level shows nonlinear characteristics when the dc electric field is very small. The Stark effect is dominant for the energy splitting as the intensity of the dc electric field becomes large, and the energy splitting increases linearly with the increase of the intensity of dc electric field.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第8期2444-2449,共6页 Acta Physica Sinica
关键词 双势阱 静电场 隧道效应 能级裂距 猝灭 波函数 量子力学 double well, dc electric field, tunneling, energy splitting
  • 相关文献

参考文献7

  • 1[1]Burrows B L, Cohen M 1998 Chem. Phys. Lett. 295 389
  • 2[2]Liu Y T, Ho K C, Lo C F et al1996 Chem. Phys. Lett. 256153
  • 3[3]Grossmann F, Jung P, DittrichTetal 1991 Z. Phys. B:Cond.Matt. 84 315
  • 4[4]Grossmann F, Hanggi P 1992 Europhys. Lett. 18 571
  • 5[5]Grossmann F, Dittrich T, Jung P et al 1991 Phys. Rev. Lett. 67516
  • 6[6]Burrows B L, Cohen M, Feldmann T 1998 Canadian J. Phys. 76129
  • 7[7]BemishRJ, Chan M C, Miller R E1996 Chem. Phys. Lett. 251182

同被引文献25

  • 1毕冬艳,李永放,曹冬梅,王利强,成延春.光场作用下双势阱中隧道效应淬灭以及相位相干作用的研究[J].陕西师范大学学报(自然科学版),2004,32(3):37-40. 被引量:1
  • 2Bemish R J, Chan M C, Miller R E. Molecular control using dc electric fields: quenching of the tunneling in HF dimmer[J]. Chemical Physics Letter, 1996, 251:182-188.
  • 3Quack M, Suhm M A. Potential energy surfaces quasiadiabatic channels rovibrational spectra and intramolecular dynamics of (HF)2 and its isotropomers from quantum monte carlo calculations [ J ]. Chemical Physics Letter, 1991, 246: 28-59.
  • 4Grossmann F, Dittrich T, Jung P, et al. Coherent destruction of tunneling [J ]. Physical Review Letters, 1991, 67: 516-519.
  • 5Burrows B L, Cohen M. Accurate approximate analytical solutions for a double-well potential [J ]. Chemical Physics Letter, 1998, 253: 389-398.
  • 6Liu Y T, Ho K C, Lo C F, et al. Eigenstates of the potential V(x )= A2x^2 + A4x^4 + A6x^6: state-dependent diagonalization method [ J ]. Chemical Physics Letter,1996, 251: 153-158.
  • 7Burrows B L, Cohen M, Feldmann T. Quasi exact solutions for an asymmetric double-well potential [ J ]. Molecular Physics, 1996, 88: 611-620.
  • 8F Grossmann,P Hanggi.Localization in a driven two-level dynamics[J].Europhys.Lett.,1992,18:571-576.
  • 9Kayanuma Y.Phase coherence and nonadiabatic transition at a level crossing in a periodically driven two-level system[J].Phys.Rev.B,1993,47:9940-9943.
  • 10Hund F.On the interpretation of molecular spectra[J].Ⅲ,Z.Phys,1927,43:805-826.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部