期刊文献+

统计预测中虚假因子的识别理论及其在预测实践当中的应用(一)——偶然性单相关的识别与过滤 被引量:1

DETECTION THEORY FOR SHAM PREDICTORS IN STATISTICAL PREDICTION AND ITS APPLICATIONS IN THE PRACTCE——PART I: RECOGNITION AND FILTERING OF ACCIDENTAL SINGLE CORRELATION
下载PDF
导出
摘要 在统计预测中,如何选取物理意义明确、预报准确率又高的预报因子,几乎是统计预测成功与否的关键。在实际预测当中,常会碰到这样的情况:某些因子与预报量的单相关率甚高,但用它们构成预报方程并做预报时,却常常导致失败。事后分析发现,这些因子并非由于物理上的原因,而仅仅由于在有限样本的情况下(在实际预报中样本客量常常很小),预报因子序列偶然地与预报量序列具有很高的相关性。本文把这样的因子称为虚假因子,并把这种相关称为偶然性单相关。 为了研究的方便,作者将因子和预报量分别化为(0,1)序列,并提出了一种最佳(0,1)化算法。在因子X和预报量Y分为(0,1)两级的情况下,假定它们相互独立,于是有 P_i(x,y)=P_i(x)P_i(y)即:X和Y在i级的正相关率等于各自出现在i级的概率之积。引进统计量 式中υ_i是(X,Y)实际出现在i级内的频数,n为子样总数。用该统计量对预报因子进行显著性检验,就能有效地识别和过滤假因子。 本文最后将理论应于台风的登陆,转向预报。显著水平为0.001时,有8个预报因子通过检验。从中选取η值较大的5个,用简单的编码相关法构成预测模型,其预报准确率为94.1%。 In statistical prediction,how to select these predictors meaningful in physics and highly effective in predicting, is almost the key to the success of statistical prediction. Such cases are often encountered in practice:the correlation between a predictor and the predic-tand is very high, but the predicting by equation with these predictors frequently leads to the failure. Analyses after the event showed that this correlation is not due to physical cause, but attributed to the usage of limited sample ( sample number is usually very small in practice ) under which situation there often exists a coincidence that makes predictor and predictand well-correlated. Such a predictor is referred as sham predictor and such correlation as accidental correlation. For convenience author transforms the predictor and the predictand into(0, 1 ) series respectively by an optimal algorithm proposed by author. Assuming then predictor X and predictand Y being independent, so we have That implies the positive correlation ratio between X and Y within i-grade equals to the product of each probability fallen within same grade. Introduce a statistic where γ_i is the occurrence times of(x, y ) within i-grade, n is total number of sample. Through a significance test with use of the statisitic we can distinguish effective predictor from false one. At the end of this paper we apply the theory to the prediction of typhoon landing or returning. When significance level being 0.001, 8 predictors were still retained.We select 5 better ones to construct a predictive model by a simple coding method and have very good result with correct ratio of 94.1%.
作者 王跃山
出处 《海洋预报》 北大核心 1993年第1期1-9,共9页 Marine Forecasts
关键词 统计预测 假因子 筛选 天气预报 Statistical prediction, False predictor screening, Accidental single correlation.
  • 相关文献

同被引文献17

  • 1施能,顾骏强,黄先香,刘锦绣,顾泽.合成风场的统计检验和蒙特卡洛检验[J].大气科学,2004,28(6):950-956. 被引量:65
  • 2林少宫.基础概率论与数理统计.北京:人民教育出版社,1963:1-298.
  • 3严士健.概论论与数理统计基础.上海:上海科学技术出版社,1982:1-274.
  • 4张从军,刘亦农,肖丽华.概章论与数理统计.上海:复旦大学出版社,2006:1-357.
  • 5Armstrong J Scott. Significance tests harm progress in forecasting. International Journal of Forecasting,2007,23 : 321-327.
  • 6Freund John E. Modem Elementary Statistics. New York: Prentice-Hall Inc. , 1952 : 1-418.
  • 7Kachi M. Nitta,T. Decadal variations of the global atmosphere-ocean system. J. Meteor. Soc. Japan,1995,75(3) :657-674.
  • 8Wolter K, Dole R M and Smith C A. Short-term climate extremes over the continental United States and ENSO. Part I: Seasonal Temperatures. Journal of Climate, 1999,12 ( 2 ) :3255-3272.
  • 9Livezey R E and Chen W Y. Statistical field significance and its determination by Monte Carlo technique. Mon. Wea. Rev. , 1983, 111 ( 1 ) :46-59.
  • 10New M, M Todd and P Jones. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. ,2001,21 : 1899- 1922.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部