期刊文献+

时滞logistic微分方程Hopf分支参数值的数值逼近 被引量:1

Numerical Approximation of Hopf Bifurcation for Delay Logistic Differential Equation
下载PDF
导出
摘要 研究了龙格 -库塔方法对具有Hopf分支的时滞logistic微分方程的数值逼近问题。证明了当该方程的解析解在 - π2 处产生Hopf分支 ,则其数值解也在λ=- π2 +O(h)发生Hopf分支。 The numerical approximation of a delay logistic differential equation with Hopf bifurcation was studied by the P-K method. When the numerical solution of a delay logistic differential equation possesses a Hopf bifurcation, the numerical solution of a delay logistic differential equation is also proved to have a Hopf bifurcation point at λ=-π2+O(h).
作者 张春蕊
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2004年第5期78-79,共2页 Journal of Northeast Forestry University
关键词 时滞logistic微分方程 龙格-库塔方法 数值逼近 HOPF分支 Delay logistic differential equation The R-K method Numerical approximation Hopf bifurcation
  • 相关文献

参考文献1

  • 1[1]Neville J Ford, Volker Wulf. The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations. JCAM, 1999,111:153 ~ 162

同被引文献5

  • 1KULENOVI M R S,LADAS G,SFICAS Y G.Global attractivity in Nicholson’s blowflies[J].Appl Anal,1992,43:109-124.
  • 2KOCIC V L J,LADAS G.Oscillation and global attractivity in a discrete model ofNicholson’s blowflies[J].Appl Anal,1990,38:21-31.
  • 3WEI J,LI Y.Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J].Nonlinear Analysis,2005,60:1357-1367.
  • 4Hale J K,Verdyn S M.Introduction to Functional Differential Equations[M].New York:SpringerVerlag,1993.
  • 5G Iooss.Bifureation of Maps and Applieations[M].New York:North Holland Publishing Company,1979:229-232.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部