摘要
研究了龙格 -库塔方法对具有Hopf分支的时滞logistic微分方程的数值逼近问题。证明了当该方程的解析解在 - π2 处产生Hopf分支 ,则其数值解也在λ=- π2 +O(h)发生Hopf分支。
The numerical approximation of a delay logistic differential equation with Hopf bifurcation was studied by the P-K method. When the numerical solution of a delay logistic differential equation possesses a Hopf bifurcation, the numerical solution of a delay logistic differential equation is also proved to have a Hopf bifurcation point at λ=-π2+O(h).
出处
《东北林业大学学报》
CAS
CSCD
北大核心
2004年第5期78-79,共2页
Journal of Northeast Forestry University