期刊文献+

一种用于降维和盲源分离的主独立元神经网络 被引量:2

Principal Independent Component Network for Dimensionality Reduction and Blind Source Separation
下载PDF
导出
摘要 经典主元分析和主元神经网络常以主元所能提取总的系统方差来确定主元数目 ,这隐含假设系统数据是高斯分布 ,所提取的主元之间相互无关 ,但不一定相互独立 ,从而难以实现非高斯系统数据的降维和信源分量。针对非高斯随机系统数据的降维和信源分离问题 ,提出一种基于二阶 Renyi近似熵指标的主独立元神经网络 ,并给出熵的近似计算方法及相应的梯度学习算法。仿真实验证明 ,该主独立元网络不仅能对数据降维压缩 ,还能有效地分离出普通主元分析法所不能提取的独立信源信息。 Principal component analysis and principal component neural network generally use the index of the total variance interpreted by principal components to choose the adequate number of principal component. These approaches implicitly suppose that the system data are Gaussian distribution and may be inappropriate for the dimensionality reduction of the non-Gaussian data. Considering the dimensionality reduction and the blind source separation of the mixture data from non-Gaussian stochastic systems, a principal independent neural network based on second order Renyi entropy criterion is proposed. An approximation method for the computation of the Renyi entropy criterion and the corresponding gradient learning algorithm are given. Simulation example shows the effectiveness of the approach for the dimensionality reduction and its advantages of the blind source separation over general principle component analysis.
作者 郭振华 王宏
出处 《数据采集与处理》 CSCD 2004年第3期239-242,共4页 Journal of Data Acquisition and Processing
基金 国家自然科学基金 ( 60 2 740 2 0 )资助项目 海外杰出青年基金 ( 60 1 2 830 3)的资助项目。
关键词 主元分析 主元神经网络 盲源分离 降维 PCA RENYI熵 信源分量 principal component analysis principal independent component neural network dimensionality reduction blind source separation Renyi′s entropy
  • 相关文献

参考文献9

  • 1Diamantaras K I, Kung S Y. Principal component neural networks: theory and applications[M]. New York: John Wiley & Sons, Inc, 1996. 75~120.
  • 2Hyvrinen A, Karhunen J, Oja E. Independent component analysis[M]. New York: John Wiley & Sons, Inc, 2001. 147~161.
  • 3Renyi A. Some fundamental questions of information theory[J]. Selected Papers of Alfred Renyi, 1976,2(174):526~552.
  • 4Parzen E. On the estimation of a probability density function and mode [J]. Ann Math Stat, 1962,33:1065~1076.
  • 5Bell T, Sejnowski J. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7: 1129~1159.
  • 6Yang H H, Amari S, Cichocki A. Information-theoretic approach to blind separation of sources in non-linear mixture[J]. Signal Processing, 1998, 64(3): 291~300.
  • 7Cardoso J F, Laheld B. Equivariant adaptive source separation[J]. IEEE Trans on Signal Proc, 1996,44(12):3017~3030.
  • 8Principe J C, Xu D, Zhao Q, et al. Learning from examples with information theoretic criteria[J]. Journal of VLSI Signal Processing Systems, 2000, 26:61~77.
  • 9HaykinS.Neural networks: a comprehensive foundation[M].北京:清华大学出版社,2001.161-173.

共引文献1

同被引文献9

  • 1孙守宇,郑君里,赵敏,张琪.不同幅度通信信号的盲源分离[J].通信学报,2004,25(6):132-138. 被引量:11
  • 2S Amari, A Cichocki, H H Yang. A New Learning Algorithm for Blind Signal Separation [J]. Advances in Neural Information Processing Systems, 1995 (8@), 757-763.
  • 3A Bell, T Sejnowski. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation,1995, (7): 1129-1159.
  • 4Yen-Wei CHEN, Xiang-Yan ZENG, Zensho NAKAO. Blind signal separation by anevolutionary neural network with higher-order statistics [C]. Four International Conference on knowledge-based iintelligent Engim'ng systems 6 Allied Technologies, 3ug-I, Brighton, UK, 2000: 566-571.
  • 5Amari S,Cichocki A,Yang H H. A New Learning Algorithmfor Blind Signal Separation [J].Advances in Neural Information Pmcessing Systems,1995(8):757-763.
  • 6Bell A,Sejnowski T.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation, 1995(7):1129-1159.
  • 7Cichocki A, Karhunen J,Kasprzak W,et al.Neural networks for blind separation with unknown number of sources [J]. Neurocomputing, 1999,24:55-93.
  • 8冯大政,史维祥.一种自适应信号盲分离和盲辨识的有效算法[J].西安交通大学学报,1998,32(5):76-79. 被引量:3
  • 9罗文坚,曹先彬,王煦法.用一种免疫遗传算法求解频率分配问题[J].电子学报,2003,31(6):915-917. 被引量:29

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部