期刊文献+

凹函数的共轭

Conjugate of concave function
下载PDF
导出
摘要 在数学规划的对偶理论中,函数及其共轭函数在解决某些实际问题时发挥着重要的作用,利用二者的关系,我们可以把涉及某一函数的问题转化为与其共轭函数有关的对偶问题加以解决.有关凸函数及其共轭函数的理论,在文献[3]中有较为详尽的论述,本文着重介绍凹函数及其共轭函数的相关理论,这些理论在对偶凸规划中同样发挥着重要作用. In the theory of duality about Mathematical programming, function and its conjugate function play an important role in the resolving of some practical problems, with their relation, we can transform a problem of a function into a problem of its conjugate function, so that we can solve it easily. The theory of convex function and its conjugate function have been discussed in [3]. In this paper, we mainly talk about the theory of concave function and its conjugate function, these theory is important either in the duality of convex programming.
出处 《大连大学学报》 2004年第4期6-9,18,共5页 Journal of Dalian University
关键词 凹函数 共轭函数 对偶理论 共轭集 凸规划 concave function conjugate of concave function conjugate sets
  • 相关文献

参考文献4

  • 1[1]FENCHEL W.On Conjugate Convex functions[J].Can.J.Math.,1949,(1):73-77.
  • 2[2]KARLIN S.A generalization of Browers fixed point theorem[J].Duke Math.J.,1941,(8):457-459.
  • 3[3]MANFRED WALK.Theory of Duality in Mathematical Programming[M].Jena,German:Democratic Republic,1989.41-54.
  • 4[4]M阿佛里耳.非线性规划-分析与方法(上册)[M].李元熹等译.上海:上海科学技术出版社,1982.101-105.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部