期刊文献+

预测城市用水量的人工神经网络模型研究 被引量:18

Study of artificial neural network model for forecasting urban water demand
下载PDF
导出
摘要 为了提高多层前馈神经网络权的学习效率,引入变尺度方法来训练神经网络的权值,并根据训练误差自适应调整学习系数和动量因子.将该方法应用于城市用水量预测中,建立了非线性人工神经网络预测模型.该模型考虑了城市工业用水重复利用率、用水人口、经济发展等众多因素对用水量需求的影响,具备系统决策功能.杭州市预测实例表明,建立的模型及其相应计算方法具有较高的预测精度和准确度. In order to improve the learning efficiency of multi-layer feedforward neural network, a variable-schedule method was introduced to train the weights of neural network. According to the training errors, the learning coefficients and the momentum factors were self-adaptively adjusted. Applying this method to forecast urban water demand, a forecasting model of nonlinear artificial neural network was established, which included the influences of many factors to urban water demand, such as repeated utilization ratio of industrial water, population, economic development and so on. The proposed forecasting model has systematic decision-making function. The application examples in Hangzhou city show that the forecasting model and its corresponding calculating method has higher forecasting precision and accuracy.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第9期1156-1161,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50078048).
关键词 城市用水量 人工神经网络模型 预测模型 变尺度法 Backpropagation Convergence of numerical methods Decision making Forecasting Learning algorithms Multilayer neural networks
  • 相关文献

参考文献10

  • 1VIRGIL C A. DAVID R M. Multi-watfore method: A water demand forecasting system [A]. Optimizing the Resources for Water Management - Proceedings of the ASCE 17th Annual National Conference [C]. Texas:ASCE, 1990: 13-18.
  • 2ARRUS R, GARADI A. Intelligent system of computer-aided long-term water demand forecasting. Application in Algeria [A]. Proceedings of the 2nd International Conference on Computer Methods in Water Resources [C]. Morocco: [s.n.], 1991: 159-171.
  • 3TAMADA T, MARUYAMA M, NAKAMURA Y. Water demand forecasting by memory based learning [A]. Proceedings of the 6th JAWO Workshop on Instrumentation, Control and Automation of Water and Wastewater Treatment and Transport Systems [C]. Banff: [s.n.], 1993: 133-140.
  • 4WANG Q, HELLER M. Hybrid Box-Jenkins and neural network forecasting of potable water demand [A]. Proceedings of the 1996 Artificial Neural Networks in Engineering, ANNIE,96 [C]. Missouri:ASME, 1996: 801-807.
  • 5丁宏达.用回归—马尔柯夫链法预测供水量[J].中国给水排水,1990,6(1):45-47. 被引量:10
  • 6王彬,穆瑞林,卜喆芬.城市生活用水预测方法的探讨[J].中国给水排水,1990,6(6):12-15. 被引量:14
  • 7程正群,李歧强,钱积新.一种快速有效的神经网络新算法[J].浙江大学学报(自然科学版),2000,34(3):338-340. 被引量:5
  • 8张土乔 柳景青 吕谋.时变灰色模型及其在城镇用水量预测中的应用研究[R].杭州:浙江大学,1999..
  • 9.杭州市供水取消多层住宅屋顶水箱和管网改造的研究报告[R].杭州: 杭州市自来水总公司,1999..
  • 10.杭州市供水专业规划(1998-2010)[R].杭州: 杭州市规划设计院,1998..

二级参考文献8

  • 1张邦礼,李银国,曹长修.非线性系统神经网络辨识的鲁棒BP算法[J].控制与决策,1996,11(1):22-27. 被引量:4
  • 2Branko Soucek,IRIS Group.Fast Learning and Invariant Object Recognition[M].London:John Wiley & Sons.Inc.,1992.
  • 3Brent R P.Fast training algorithms for mutilayer neural nets[J].IEEE Trans on N N,1991,2(3):346-354.
  • 4Kuan C M,Hornik K.Convergence of learning algorithms with constant learning rates[J].IEEE Trans on N N, 1991,2(5):484-489.
  • 5Jaeobs R A.Increased rates of convergence through learning rate adaptation[J].Neural Netwoks,1988,1:295-307.
  • 6Watrous R L.Learning algorithms for connectionist networks:Applied gradient methods of nonlinear optimization[J].Proc.1st Internat,Conf,on Neural Networks.1987, 2:619-627.
  • 7Ljung L.System Identification:Theory for the User[M].Englewood Cliffs,NJ:Prentiee-Hall,1987.
  • 8李歧强,顾永如,钱积新.神经网络的具有自适应动量和步长的伪牛顿算法[J].信息与控制,1998,27(2):146-151. 被引量:9

共引文献24

同被引文献242

引证文献18

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部