期刊文献+

内窥镜机器人几何特性参数的优化研究 被引量:2

Optimum design of shape parameters for endoscopic robot
下载PDF
导出
摘要 针对人体内腔黏液为非牛顿流体的特点,建立螺旋式内窥镜机器人在人体内腔中运行时的数学模型.给出适合于该机器人系统的非牛顿流体修正雷诺方程的求解方法和计算程序框图.采用有限差分法分析螺纹的几何特性参数对机器人轴向摩擦牵引力、周向摩擦阻力,以及黏液膜承载能力的影响,进而获得了一组相对最优的无量纲几何特性参数值.机器人运行速度实验证明了此理论分析模型的正确性. A mathematical model for the spiral-type endoscopic robot working inside the lumen of human body full of non-Newton fluid was established. The modified Reynolds equation corresponding to the endoscopic robot system and the flow chart of its algorithm routine were proposed. The relationship between the structural parameters and the kinetic properties such as the thrust force, the circumferential resisting force and supporting capacity of the robot were analyzed theoretically. Then the optimum design of the spiral-type robot was obtained. The locomotion experiment of the micro robot validated the correctness of the proposed model.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第9期1175-1179,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50375143).
关键词 内窥镜机器人 非牛顿流体 有限差分法 微机电系统 Finite difference method Mathematical models Microelectromechanical devices Non Newtonian flow Robots Structural design Structural optimization
  • 相关文献

参考文献8

  • 1TAKAHASHI M, HAYASHI I, IWATSUKI N, et al. The development of an in-pipe microrobot applying the motion of an earthworm [A]. Proceedings of 1994 5th International Symposium on Micro Machine and Human Science [C]. Nagoya: [s.n.],1994:35-40.
  • 2HOEG H D, SLATKIN A B, BURDICK J W. Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope [A]. Proceeding of 2000 International Conference on Robotics and Automation [C]. San Francisco: [s.n.],2000: 1599-1606.
  • 3DARIO P, CARROZA M C, LENCIONI L, et al. A micro robotic system for colonoscopy [A]. Proceeding of 1997 International Conference on Robotics and Automation [C]. Albuquerque: [s.n.], 1997: 1567-1572.
  • 4ZHOU Yinsheng,HE Huinong,GU Daqiang,AN Qi,QUAN Yongxin.Noninvasive method to drive medical micro-robots[J].Chinese Science Bulletin,2000,45(7):617-620. 被引量:3
  • 5周银生,贺惠农,全永昕.无损伤肠道机器人运行速度的研究[J].摩擦学学报,1999,19(4):299-303. 被引量:18
  • 6周银生,李立新,赵东福.一种新型的微型机器人[J].机械工程学报,2001,37(1):11-13. 被引量:28
  • 7POWELL R L, AHARONSON E F, SCHWARZ W H. Rheological behavior of normal tracheobronchial mucus of canines [J]. Journal of Applied Physiology, 1974, 37(3):447-451.
  • 8吴江红,程西云,韦云隆,周银生,朱永清.狗小肠粘液流变性能研究[J].重庆大学学报(自然科学版),2000,23(2):10-12. 被引量:4

二级参考文献6

共引文献43

同被引文献15

  • 1陈柏,顾大强,潘双夏,钟杰.仿蝌蚪与螺旋的泳动机器人系统的设计[J].机械工程学报,2005,41(10):88-92. 被引量:11
  • 2王坤东,颜国正,施建.微机器人结肠镜样机及离体肠道试验研究[J].中国生物医学工程学报,2006,25(5):547-551. 被引量:6
  • 3陈柏,蒋素荣,顾大强,梁亮.螺旋内窥镜机器人非线性仿真分析模型研究[J].中国机械工程,2006,17(21):2256-2260. 被引量:3
  • 4陈柏,蒋素荣,顾大强.运行环境特性对螺旋内窥镜机器人性能的影响[J].仪器仪表学报,2006,27(11):1391-1394. 被引量:4
  • 5Byungkyu K, Moon G L, Young P L, et al. An Earthworm-like Micro Robot Using Shape Memory Ally Actuator[J]. Sensors and Actuators (A), 2006, 125:429-437.
  • 6Gdbor K, Moshe S, Menashe Z. Propulsion Method for Swimming Microrobots[J]. IEEE Transactions on Robotics, 2007,23 ( 1 ): 137-150.
  • 7Ikeuchi K, Yoshinaka K, Tomita N. Low Invasive Propulsion of Medical Devices by Traction Using Mucus[J]. Wear, 1997,209(1/2) : 179-183.
  • 8HOEG H D,SLATIN A B,BURDICK J W.Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope[C]∥ IEEE International Conference on Robotics and Automation.Sanfrancisco:IEEE,2000:1599-1606.
  • 9MANGEN E V,KINGSLEY D A,QUINN R D,et al.Development of peristaltic endoscope[C]∥International Conference on Robotics and Automation.Washington:IEEE,2002:347-352.
  • 10YAMAZAKI A,SENDOH M,ISHIYAMA K.Fabrication of micropump with spiral-type magnetic micromachine[J].Transactions on Magnetics,2003,39(5):3289-3291.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部