期刊文献+

基于简化随机场模型的高分辨率遥感影像分割方法 被引量:4

Remote Sensing Image Segmentation Algorithm Based on Simplified Random Field Model
下载PDF
导出
摘要 提出了一种灰度分割的基础上添加辅助的纹理分割的基于简化随机场模型的遥感影像目标分割方法,即用常用的描述局部图像特点的特征代替MRF中定义的特征,将这些特征组合成特征向量进行模糊C均值聚类完成分割。给出了算法流程和实验结果,并将该结果与基于高斯马尔可夫随机场模型法分割的结果进行比较,实验结果表明简化随机场模型法在保证一定的分割精度的情况下,分割速度明显快于高斯马尔可夫随机场模型法。 Taking into account both gray-value and texture feature,thi s paper proposes a remote sensing image segmen-tation algorithm based on simplifi ed Random Field Model.Firstly,some common features that describe local image substi-tute the features of MRF and form a eigenvector.Then the eigenvector is used to perform Fuzzy C-Mean(FCM)clustering and the segmented image is achie ved.In addition,this paper gives the algorithm flow and tests the method with 1m IKONOS image.The results shows that this algorithm has faster computing sp eed and better region integrality than stan-dard GMRF.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第26期28-30,共3页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:40101021) 中科院地理科学与资源所知识创新工程领域前沿项目(编号:CXIOG-D02-01)
关键词 高分辨率遥感 影像分割 特征 简化随机场模型 high resolut ion remote sensing,image segmentation,feature,Simplified Random Field Model
  • 相关文献

参考文献8

二级参考文献22

  • 1梁怡.人工智能、空间分析与空间决策[J].地理学报,1997,52(S1):104-113. 被引量:11
  • 2刘健庄,谢维信,黄建军,李文化.聚类分析的遗传算法方法[J].电子学报,1995,23(11):81-83. 被引量:27
  • 3叶秀清,顾伟康,肖强.快速模糊分割算法[J].模式识别与人工智能,1996,9(1):66-70. 被引量:27
  • 4倪玲,舒宁.遥感图像理解专家系统中面向对象的知识表示[J].武汉测绘科技大学学报,1997,22(1):32-34. 被引量:9
  • 5郭桂蓉 谢维信.模糊模式识别[M].长沙:国防科技大学出版社,1993..
  • 6[1] Besag J. On the Statistical Analysis of Dirty Pictures[J]. Journal of Royal Statistical Society, 1986, B48:259~302.
  • 7[2] Park J, Kurz L. Image Enhancement Using the Modified ICM Method[J]. IEEE Transactions on Image Processing, 1996,5(5):765~771.
  • 8[3] Fwu J K, Djuric P M. Unsupervised Vector Image Segmentation by a Tree Structure-ICM Algorithm[J]. IEEE Transactions on Medical Imaging, 1996,15(6):871~880.
  • 9[4] Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-T(6):721~741.
  • 10[5] Lakshmanan S, Derin H. Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(8):799~813.

共引文献80

同被引文献41

  • 1苏俊英,曹辉,张剑清.高分辨率遥感影像上居民地半自动提取研究[J].武汉大学学报(信息科学版),2004,29(9):791-795. 被引量:26
  • 2明冬萍,骆剑承,沈占锋,汪闽,盛昊.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18-20. 被引量:108
  • 3黄昕,张良培,李平湘.基于小波的高分辨率遥感影像纹理分类方法研究[J].武汉大学学报(信息科学版),2006,31(1):66-69. 被引量:19
  • 4Hideki N, Mahdad N S, Eiji K. MRF-based Texture Segmentation using Wavelet Decomposed Images [ J ]. Pattern Recognition ,2002, 35 (4) : 771-782.
  • 5Tseng D C, Lai C C . A Genetic Algorithm for MRF-based Segmentation of Muhi-spectral Textured Images [ J ]. Pattern Recognition Letters. 1999, 20(14) : 1499-1510.
  • 6Blake A, Zisserman A. Visual Reconstruction [ M ]. Cambridge, MA : The MIT Press, 1987.
  • 7Chellappa R. Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing [C] //Kanal L N, Rosenfeld A. Progress in Pattern Recognition. Amsterdam: Elsevier Science Publishers BV, 1985, 2: 79-112.
  • 8Manjunath B S, Chellappa R. Unsupervised Texture Segmentation Using Markov Random Field Models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5) : 478-482.
  • 9Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2: 121-167.
  • 10Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods : Support Vector Learning [ M ]. Cambridge, MA: The MIT Press, 1999.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部