期刊文献+

关于倒向随机微分方程生成元的逆比较定理(英文) 被引量:2

The Converse Comparison Theorems for Generators of Backward Stochastic Differential Equations
下载PDF
导出
摘要 Coquet等人在g(t,y ,0 )≡ 0的条件下建立了一个关于倒向随机微分方程生成元g的逆比较定理 .本文对一般的倒向随机微分方程的生成元以及对L2 有界的生成元分别得到了两个新的逆比较定理 . Coquet et al established a converse comparison theorem for generators g of backward stochastic differential equations (BSDEs) under the assumption g(t,y,0)≡0.This paper establishes two new converse comparison theorems,one is for general generators of BSDEs,the other is for generators which are L2-bounded.
作者 江龙
出处 《应用数学》 CSCD 北大核心 2004年第4期575-582,共8页 Mathematica Applicata
基金 SupportedbytheNationalNaturalScienceFoundationofChina(10 1310 30 )
关键词 倒向随机微分方程 生成元 比较定理 逆比较定理 L^2—有界生成元 Backward stochastic differential equation Generator Comparison theorem Converse comparison theorem L2-bounded generator
  • 相关文献

参考文献6

  • 1Pardoux E,Peng S. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990,14(1) :55-61.
  • 2Peng S. A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation[J]. Stochastics, 1992,38(2) : 119- 134.
  • 3EL Karoui N,Peng S, Quenez M C. Backward stochastic differential equations in finance [J]. Math Finance, 1997,7(1) :1-71.
  • 4Coquet F, H u Y, Memin J, Peng S. A General converse comparison theorem for backward stochastic differential equations[J]. C R Acad Sci Paris,2001,333(1) :577-581.
  • 5Briand P,Coquet F, Hu Y,Memin J ,Peng S. A converse comparison theorem for BSDEs and related properties of g- expectation[J]. Electon Comm Probab ,2000,5 : 101- 117.
  • 6Chen Z, Epstein L. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002,70 (4) :1403-1443.

同被引文献6

  • 1JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 2江龙.倒向随机微分方程生成元的表示定理及其应用(英文)[J].应用概率统计,2005,21(1):53-60. 被引量:5
  • 3Pardoux E, Peng S. Adapted solution of a backward stochastic diferential equations[J]. System and Control Letters,1990,14:55-61.
  • 4Mao X. Adapted solutions of backward stochastic differential equations with no-lipschitz coefficients[J]. Stochastic Process and their Applications 1995,58:281-292.
  • 5Jiang Long. Representation theorems for generators of backward stochastic differential equations[J]. C R Acad Sci Paris Ser I, 2005,340:161-166.
  • 6王赢,王向荣.一类非Lipschitz条件的Backward SDE适应解的存在唯一性[J].应用概率统计,2003,19(3):245-251. 被引量:24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部