期刊文献+

两相渗流驱动问题的体积有限元数值计算和分析 被引量:1

Finite Volume Methods for Two-phase Incompressible Flow in Porous Media
下载PDF
导出
摘要 本文在一般的三角形剖分上对两相渗流驱动提出了全离散体积有限元 ,并分析了带有弥散项时格式的收敛性 ,得到H1 模的最优估计 . Two-phase,incompressible flow in a porous medium is governed by a system of nonlinear partial differential equation.A finite volume method on triangular subdivision is presented and analyzed.The amount of computing work is smaller than that of finite element methods.Optimal order H1-error estimate is derived when dispersion is included.A numerical experiment is presented.
作者 宋怀玲
出处 《应用数学》 CSCD 北大核心 2004年第4期629-638,共10页 Mathematica Applicata
基金 国家重点基础研究专项经费 (G19990 32 8) 国家自然科学基金 (198710 5 1 19972 0 39)
关键词 体积有限元 全离散 误差估计 Finite volume element Discrete Error estimate
  • 相关文献

参考文献5

  • 1韦达 托梅.抛物问题的Galerkin有限元法[M].长春:吉林大学出版社,1986..
  • 2Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM J Numer Anal , 1982,19(5) :871-885.
  • 3JR D J. Finite difference methods for two-phase incompressible flow in Porous Media[J]. SIAM J Numer Anal , 1983,20(4): 681-696.
  • 4Russell T F. Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible dispacement in Porous Media[J]. SIAM J Numer Anal ,1985,22(5):970-1013.
  • 5Ewing R E, Russell T F. Efficent time-stepping methods for miscible displacement problem in Porous Media[J]. SIAM J Numer Anal ,1982,19(1) : 1-67.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部