期刊文献+

镁表面改性及其在仿生体液中的耐蚀行为 被引量:26

Surface modification on magnesium by alkali-heat-treatment and its corrosion behaviors in SBF
下载PDF
导出
摘要 对纯度为99.9%的纯镁表面改性,以提高纯镁在仿生模拟体液(SBF)中的耐腐蚀性能。其过程为:室温下将纯镁在初始pH值为9.3的过饱和NaHCO3 MgCO3混合溶液中浸泡24h,然后在773K保温10h;再将试样放入(37±0.5)℃的SBF溶液中浸泡14d。X射线衍射分析表明:纯镁在NaHCO3 MgCO3混合溶液中浸泡后,表层主要为MgCO3·3H2O晶体;热处理后,MgCO3·3H2O晶体转变成MgCO3和Mg(OH)2的混合物。EDS分析表明,距表面厚约20μm的基体被氧化,形成了耐蚀氧化层。经碱热处理的试样在SBF溶液中浸泡14d后,经X荧光能谱(XPF)分析可知表层沉积出Ca/P摩尔比为1.858的钙磷基沉淀。本阶段实验表明,碱热处理可以显著提高纯镁在仿生环境下的耐腐蚀性能。 The surface modification on magnesium(99.9%) was carried out to improve its corrosion resistance in simulated body fluid(SBF) solution. Pure magnesium specimens were first treated in supersaturated NaHCO_3-MgCO_3 mixed solutions(SNSM) at room temperature, and then heat-treated at 773 K for 10 h; finally, the corrosion resistance of the samples was tested in SBF solution. The X-ray diffraction(XRD) analysis shows that the coatings obtained on the samples after being treated in SNSM solution is mainly composed of MgCO_3·3H_2O. More important, EDS analysis shows that a magnesium oxide layer with thickness of 20 μm is formed after heat treatment. Ca-P based depositions with molar ratio of 1.858 are detected on the modified specimens after they are immersed in SBF for 14 days. It can be concluded that the coating obtained through alkali and heat treatment could effectively protect magnesium from corrosion in the simulated biological environment.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第9期1508-1513,共6页 The Chinese Journal of Nonferrous Metals
关键词 生物材料 表面改性 碱热处理 SBF溶液 magnesium biomaterials surface modification alkali-heat-treatment SBF solution
  • 相关文献

参考文献8

  • 1[1]Gurrappa I. Corrosion and its importance in selection of materials for biomedical applications[J]. Corrosion Prevention and Control, 2001, 48(1): 23-27.
  • 2[2]Al-Abdullat Y, Tsutsumil S, Nakajima N, et al. Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank's solution for new biomaterial applications [J]. Materials Transactions, 2001, 42(8): 1777 - 1780.
  • 3[3]Rashmir-Raven A M, Richardson D C, Aberman H M, et al. Response of cancellous and cortical canine bone to hydroxylapatite-coated and uncoated titanium rods[J]. J Applied Biomaterials, 1995, 6(4): 237-242.
  • 4[4]Kim S G, Inoue A, Masumoto T. Increase of mechanical strength of a Mg85 Zn12Ce3 amorphous alloy by dispersion of ultrafine hcp-Mg particles[J]. Mater Trans,1991, 32(9): 875- 878.
  • 5[5]Kim S R, Lee J H, Kim Y T, et al, Synthesis of Si,Mg substituted hydroxyapatites and their sintering behaviors[J]. Biomaterials, 2003, 24(8): 1389- 1398.
  • 6[6]Ambat R, Aung N N, Zhou W. Studies on the influence of chloride ion and pH on the corrosion and electrochemical behavior of AZ91D magnesium alloy [J ].Applied Electrochemistry, 2000, 30(7): 865 - 874.
  • 7[7]Gray J E, Luan B. Protective coatings on magnesium and its alloys-A critical review[J]. Alloys and Compounds, 2002, 336(1-2): 88-113.
  • 8[8]Makar G L. Kruger, Corrosion of magnesium[J]. International Materials Reviews, 1993, 38 (3): 138 -158.

同被引文献307

引证文献26

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部