期刊文献+

NiCoCrAlYHf/EB-PVD热障涂层的热循环氧化行为 被引量:3

Thermal cyclic oxidation behavior of NiCoCrAlYHf/EB-PVD TBCs
下载PDF
导出
摘要 采用电子束物理气相沉积方法(EB PVD)在NiCoCrAlYHf粘结层上沉积YSZ热障层,研究了该热障涂层1100℃的循环氧化行为(每个循环为:1100℃保温30min、空冷5min),分析了粘结层和热生长氧化物的演化过程。结果表明:NiCoCrAlYHf粘结层氧化初期由β NiAl和γ固溶体组成,186次循环氧化后β相完全转变为γ固溶体。NiCoCrAlYHf/EB PVD热障涂层中的热生长氧化物包含Al2O3层和靠近热障层的尖晶石薄层。该热生长氧化物生长速度较快,在粘结层的一些富Hf区域优先生长而呈现出明显的不均匀性;但其具有较大的失效临界热生长氧化物厚度,失效时热生长氧化物均匀处的厚度约为10μm。 The cyclic oxidation(30 min hold at 1 100 ℃, 5 min cooled in air) of electron beam physical vapor deposition(EB-PVD) yttria stabilized zirconia thermal barrier coatings(TBCs) on NiCoCrAlYHf bond coat at 1 100 ℃ was investigated. Attention was focused on the development of bond coat and thermally grown oxide(TGO). The result shows that the bond coat is composed of β -NiAl and γ solid solution at the initial stage of cyclic oxidation. The β phase is completely transferred to γ solid solution after 186 cycles. The TGO consists of an Al_2O_3 layer and a thin spinel layer in NiCoCrAlYHf/EB-PVD TBCs. This TGO has a big growth rate and grows irregularly because of selective growth at Hf-riched areas in the bond coat. But the TBCs has a larger critical thickness of TGO for failure. The thickness of TGO at uniform place is about 10 μm when the TBCs fails.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第9期1519-1524,共6页 The Chinese Journal of Nonferrous Metals
基金 国际科技合作重点资助项目(2002DFBA0002)
关键词 热障涂层 热生长 氧化物 循环氧化 thermal barrier coating thermally grown oxide cyclic oxidation
  • 相关文献

参考文献15

  • 1[1]Beele W, Czech N, Schulenberg T. Thermal barrier coatings, advancing efficiency [ J ]. MPS Review,1997, 8: 19.
  • 2[2]Stiger M J, et al. Thermal barrier coatings for the 21st century[J]. Z Metallkd, 1999, 90(12): 1069- 1078.
  • 3[3]Hass D D. Thermal Barrier Coatings Via Directed Vapor Deposition[D]. University of Virginia, 2001.
  • 4[4]Kukla R, Ludwig R, Meinel J. Overview on modern vacuum web coating technology[J]. Surface and Coatings Techn, 1996, 86-87: 753-761.
  • 5[5]Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(4): 280- 284.
  • 6[6]Leyens C. Contemporary materials issues for advanced EB-PVD thermal barrier coating systems[J]. Z Metallkd, 2001, 92(7): 762 - 783.
  • 7[7]Mumm D R, Evans A G. Mechanisms controlling the performance and durability of thermal barrier coatings[J]. Key Eng Mater, 2001, 197(1): 199-230.
  • 8[8]Wright P K, Evans A G. Mechanisms governing the performance of thermal barrier coatings[J]. Current Opinion in Solid State & Mat Sci, 1999, 4(3): 255 -265.
  • 9[9]Evans A G, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Prog Mater Sci,2001, 46(5): 505-553.
  • 10[10]Kim G M, Yanar N M, Meier G H. The effect of the type of thermal exposure on the durability of thermal barrier coatings [J]. Scripta Mater, 2002, 46 (7):489 - 495.

同被引文献32

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部