期刊文献+

高温高压岩石粒间熔体(和流体)形态学及其研究进展 被引量:11

THE MORPHOLOGY OF MELT (AND FLUID) IN INTERGRANULAR PORES OF ROCK UNDER HIGH-TEMPERATURE AND HIGH-PRESSURE AND SOME DEVELOPMENT OF EXPERAMENTAL STUDIES OF THIS BRANCH
下载PDF
导出
摘要 高温高压岩石粒间熔体(和流体)形态学是现代岩石学的前沿领域之一。它主要研究高温高压下低程度部分熔融(或含少量流体)岩石中,矿物颗粒之间熔体(或流体)形态特征、连通性,以及与周围矿物相互关系的科学。研究中较多地借鉴了材料科学的研究方法,与界面物理化学密切相关。高温高压下地幔岩石粒间熔体(和流体)形态学的研究为探讨地幔部分熔融作用、软流圈和地幔交代作用的成因提供了重要的实验依据,已成为地球深部研究的重要手段之一。目前该学科还没有为我国广大地学工作者所熟悉。为此,对高温高压岩石粒间熔体(和流体)形态学的基础理论、实验方法,以及某些实验研究结果进行简要介绍,从而为读者对该学科的了解提供一些便利。 The morphology of melt (and fluid) in intergranular pores of rock under high-temperature and high-pressure is one of forward branches in modern petrology. In this branch, the morphological features of melt (and fluid) in intergranular pores of rock, interconnectivity, and the relation between melt (or fluid) and mineral crystals around them under high-temperature and high-pressure are studied. Some observational methods of materials science are used in the study of this brach. The interfacial energy theory of physical chemistry is theoretical basis of this branch. The studies of morphology of melt (and fluid) in intergranular pores of mantle rock under high-temperature and high-pressure are very important for partial melting of mantle, asthenosphere, and metasomatism of mantle. In this paper, the theoretical basis, experimental method, and some results of this branch are reviewed.
出处 《地球科学进展》 CAS CSCD 2004年第5期767-773,共7页 Advances in Earth Science
基金 国家自然科学基金重大项目"地球内部几个重要界面物质的高温高压物性研究"(编号:10299040) 中国科学院知识创新工程重要方向项目"同步辐射高压高温实验技术及地幔地核重要矿物的物性研究"(编号:KJCX2 SW No.3)资助
关键词 高温高压 岩石 熔体 流体 二面角 High-temperature and high-pressure Rock Melt, Fluid Dihedral angle.
  • 相关文献

参考文献21

  • 1Ringwocd A E. Mineralogical constitution of the deep mantle[ J ].Journal of Geophysical Research, 1962, 67:4 005-4 010.
  • 2Green D H, Ringwood A E. The genesis of basalt magmas [ J ].Contributiona to Mineralogy and Petrology, 1967,15:103-190.
  • 3Kushiro I. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt [ J ]. Annual Review on Earth and Planet Science, 2001,29:71-107.
  • 4Jin Zhenming, Green W H , Zhou Yi. Melt topology in partially molten peridotite during ductile deformation [ J ]. Nature, 1994,372:164-167.
  • 5Ye Ruilun(叶瑞伦),Fang Yonghan(方永汉),Lu Peiwen(陆佩文). Physical Chemistry of Inorganic Material [ M]. Beijing:Press of Chinese Architecture Industry, 1986. 103-115 ( in Chinese) .
  • 6Watson E B, Brenan J M. Fluids in the lithosphere, 1. experimentally-determined wetting characteristics of CO2-H20 fluids and their implications for fluid transport, host-rock physical properties,and fluid inclusion formation[ J]. Earth and Planetary Scie
  • 7Ikeda S, Toriumi M, Yoshida H, et al. Experimental study of the textural development of igneous rocks in the late stage of crystallization: The importance of inteffacial energies under non-equilibrium conditions [ J ]. Contributiona to Mineralogy and Petr
  • 8Cmiral M, John D, Gerald F, et al. A clock look at dihedral angles and melt geometry in divine-basalt aggregates: A TEM study[J]. Contributiona to Mineralogy and Petrology, 1998,130: 336-345.
  • 9Laporte D, Watson E B. Experimental and theoretical constraints on melt distribution in crustal sources: The effect of crystalline anisotropy on melt interconnectivity [ J]. Chemical Geology, 1995,124:161-184.
  • 10Holness M B. The effect of feldspar on quartz- H20 -CO2 dihedral angles at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites[ J]. Contributiona to Mineralogy and Petrology, 1995,118 (4) :356-364.

同被引文献104

引证文献11

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部