期刊文献+

关于次线性椭圆方程Neumann问题多重解的注记(英文)

A Remark on Multiple Solutions of Neumann Problem for Sublinear Elliptic Equations
下载PDF
导出
摘要 用临界点理论中的极小极大方法得到了次线性椭圆方程Neumann问题多重解的存在性. The existence of multiple solutions is obtained for Neumann problem of sublinear elliptic equations by the minimax methods in the critical point theory.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第5期753-757,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471113) 教育部科学技术重点项目 教育部高等学校优秀青年教师教学科研奖励计划.
关键词 次线性椭圆方程 临界点 诺依曼问题 极小方法 多解 Neumann problem critical point sublinear elliptic equation multiple solutions minimax methods
  • 相关文献

参考文献10

  • 1Tang Chun-lei, Wu Xing-ping. Existence and Multiplicity for Solutions of Neumann Problem for Semilinear Elliptic Equations [J]. J Math Anal Appl, 2003, 228(2): 660 - 670.
  • 2Tang Chun-lei. Multiple Solutions of Neumann Problem for Elliptic Equations [J]. Nonlinear Anal TMA, 2003, 54(4): 637 -650.
  • 3Li Chong. The Existence of Infinitely Many Solutions of a Class of Nonlinear Elliptic Equations with Neumann Boundary Condition for Both Resonance and Oscillation Problems [J]. Nonlinear Analysis TMA, 2003, 54(3): 431 - 443.
  • 4V annella G. Existence and Multiplicity of Solutions for a Nonlinear Neumann Problem [J]. Ann Mat Pura Appl, 2002, 180(4): 429- 440.
  • 5Lazzo M. Morse Theory and Multiple Positive Solutions to a Neumnnn Problem [J]. Ann Mat Pura Appl, 1995, 168(4): 205- 217.
  • 6Rabinowitz P H. On a Class of Functionals Invariant Under a Zn Action [J]. Trans Amer Math Soc, 1988, 310(1): 303 - 311.
  • 7Drabek P, Tersian S A. Characterizations of the Range of Neumann Problem for Semilinear Elliptic Equations [J]. Nonlinear Anal TMA, 1987, 11(6): 733-739.
  • 8Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems [M]. New York: Springer-Verlag, 1989.
  • 9Brezis H, Nirenberg L. Remarks on Finding Critical Points [J]. Comm Pure Appl Math, 1991, 44: 939- 963.
  • 10唐春雷,姜学源.次线性Neumann问题的多重解(英文)[J].西南师范大学学报(自然科学版),2000,25(5):511-516. 被引量:2

二级参考文献2

  • 1Kuo Chungcheng,Proc Am Math Soc,1996年,12 4卷,1期,83页
  • 2Tang Chunlei,Nonlinear Analysis Theory Methods Applications

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部