期刊文献+

图的因子控制

Factor Domination in Graphs
下载PDF
导出
摘要 P.Dankelmann和R.C.Laskar(2003年)提出如下猜想:设F1和F2是完全图Kn的两个边不交的因子,如果δ(Fi)≥2,i=1,2,则因子控制数γ(F1,F2)≤3n5。如果F1∪F2有长的交错路,则猜想成立。 P. Dankelmann and R.C. Laskar (in 2003) gave the following conjecture: Let F_1 and F_2 be edge disjoint factors of the complete graph K_n, if δ(F_1)≥2,i=1,2, then γ(F_1,F_2)≤3n5. In this paper, we prove that the conjecture holds if F_1∪F_2 contains the long alternating path.
出处 《山东科技大学学报(自然科学版)》 CAS 2004年第3期88-91,共4页 Journal of Shandong University of Science and Technology(Natural Science)
关键词 因子控制数 交错路 交错Hamilton圈 factor domination number, alternating path, alternating Hamilton cycle.
  • 相关文献

参考文献5

  • 1T W Haynes, S T Hedetniemi and P J Slater. Fundamentals of domination in graphs[ M]. Marcel Dekker,New York, 1998.
  • 2T W Haynes, S T Hedetniemi and P J Slater.Domination in graphs, Advanced Topics [ M]. Marcel Dekker, New York, 1998.
  • 3W McCuaig, B. Shepperd. Domination in graphs with minimum degree two[J]. J. Graph Theory, 1989,13:749- 762.
  • 4P Dankelmann and R C Laskar. Factor domination and minimum degree[J ]. Discrete Math., 2003,262:113-119.
  • 5R C Brigham and R D Dutton. Factor dominatin in graphs[J ]. Discrete Math., 1990,86:127 - 136.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部