摘要
借助插值的思想 ,首先给出函数 f( x)的泰勒公式的行列式表达式 ,推广了柯西中值定理 .据此拉格朗日中值定理、泰勒公式、罗必塔法则均是该结论的推论 ,从而对经典的中值定理、泰勒公式。
Having the aid of the insert value idea, we put out the expression of determinant with the Taylor polynomial of function f(x) . Then we gain the generalized Cauchy mean-value theorem. Thus, Lagrange mean-value theorem and Taylor formula and L′Hospital rule are its corollaries. Therefore, we unified prove the mean-value theorem and Taylor (formula) and L′Hospital rule.
出处
《大学数学》
2004年第5期113-116,共4页
College Mathematics
关键词
中值定理
泰勒公式
罗必塔法则
the mean-value theorem
Taylor formula
L′Hospital rule