期刊文献+

化学信号的近似高阶导数计算 被引量:1

Approximate High Order Derivative Calculation of Analytical Signals
下载PDF
导出
摘要 提出了化学信号近似四阶导数计算的新方法———小波卷积法。该法通过信号与二阶样条小波函数的卷积运算对信号求导,能用于高噪音信号的直接求导,避免了普通导数运算将噪音放大的缺陷,即使对信噪比低至0.5的信号也能得到光滑的导数信号。详细讨论了尺度值、噪音、信号类型对求导的影响并建立了参数确定规则。将该法用于含噪音重叠分析化学信号的求导,能同时提高信号的分辨率和信噪比,结果满意。 A novel method for approximate fourth derivative calculation of analytical signal called wavelet convolution method is proposed and successfully used in processing CE signals. In this method, the derivative signals are produced by convoluting 2nd-order spline wavelet function with the original signals. It can process noisy signals efficiently, and smooth derivative signals are obtained. The influence of scale, noise level and signal types are discussed, and the rule for determination of parameter is found. When the method is used to calculate derivative of overlapped signals with high noise, both separation degree and signal-noise-ratio can be improved greatly.
作者 王瑛 莫金垣
出处 《分析科学学报》 CAS CSCD 北大核心 2004年第5期453-457,共5页 Journal of Analytical Science
基金 国家自然科学基金(No.29975033) 广东省自然科学基金(No.980340)
关键词 求导 卷积 二阶样条小波 噪音 Derivative Convolution 2nd-order spline wavelet Noise
  • 相关文献

参考文献9

  • 1邵学广,庞春艳.连续小波变换用于化学信号的近似导数计算[J].计算机与应用化学,2000,17(3):246-250. 被引量:7
  • 2Morrey J R. Anal. Chem.[J],1968,40:905.
  • 3Nie L, Wu SG, Lin XQ et al. J. Chem. Inf. Comp. Sci.[J],2002,42 (2):274.
  • 4Rojas F S, Ojeda C B, Cano Pavon J M. Talanta[J],1988,35:753.
  • 5Chui K. An Introduction to Wavelet[M]. San Diego: Academic Press, 1992.
  • 6Zhang Y, Mo J, Xie T et al. Analyst[J],2000,125(7):1303.
  • 7Zhang Y Q, Mo J Y, Xie T Y et al. Anal. Chim. Acta[J],2001,437:151.
  • 8Leung A K,Chau F T, Gao J B. Anal. Chem.[J],1998,70:5222.
  • 9Shao X G, Pang C Y, Su Q D. Fresenius J. Anal. Chem.[J],2000,367:525.

二级参考文献2

共引文献6

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部