期刊文献+

拱形金属薄膜非线性力学行为数学建模及其计算 被引量:1

Mathematical modeling and simulation for nonlinear mechanical behavior of vaulted metallic membrane
下载PDF
导出
摘要 对大变形金属薄膜结构塑性应力应变关系、几何关系和静力平衡关系进行整理和适当变换,将其转化成由3个微分方程和1个代数约束方程组成的初值问题的1阶微分代数方程。采用可变步长和变阶的Klopfenstein-Shampine数值微分方法和Newton-Raphson求解方法,可求得膜片任何位置在任意时刻的应力、应变和变形等力学参量,还可以估算出膜片的极限荷载。最后对一个实例作了数值分析,其计算结果与实验数据得到了较好的符合。 A method for plastic large deformation analysis of circular metallic membrane subjected to lateral pressure was presented. Stress-strain relationships of plasticity, geometrical equations, and static equilibrium conditions were acquired. Then these expressions were transformed to initial-value problems in differential algebraic equations of index 1, which consists of three ordinary differential equations and one algebraic constraint equation. Numerical solutions were carried out by using Newton-Raphson root-locating method and Klopfenstein-Shampine numerical differentiation formulas with varying step size and variable order. The stresses, strains, deformations of metallic membrane at specific times could be obtained and the ultimate pressure could also be estimated. Finally, numerical analysis for an example was completed. The comparison shows fairly close agreement between numerical and experimental results.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2004年第5期625-629,共5页 Chinese Journal of Computational Mechanics
关键词 大变形 金属膜 数学模型 数值计算 Computer simulation Differential equations Mathematical models Numerical analysis Numerical methods Ordinary differential equations Plastic deformation
  • 相关文献

参考文献3

  • 1[1]Brenan K E, Campbell S L, Petzold L R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations[M]. Philadelphia: SIAM, 1989.
  • 2[2]Klopfenstein R W. Numerical differentiation formu-las for stiff systems of ordinary differential equations[J]. RCA Review, 1971,32(3):447-462.
  • 3[3]Shampine L F, Reichelt M W. The MATLAB ODE suite[J]. SIAM J Sci Comput,1997,18(1):1-22.

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部