期刊文献+

General Fuzzy Min-Max神经网络的改进与应用 被引量:2

Improvement and Application Based on General Fuzzy Min-Max Neural Network
下载PDF
导出
摘要 针对 General Fuzzy Min- Max(GFMM)神经网络不能自适应学习新类的缺陷 ,提出了一种基于该网络的无师训练改进算法。它一方面继承原 GFMM网可以处理模糊输入量的优点 ,重构了网络中的模糊隶属度函数 ;另一方面结合ART2神经网络无师学习的特点 ,引入了网络警戒门限和运行状态切换控制。改进后的 GFMM神经网络完全具备了自适应调整和无师学习的能力 ,并展现出了良好的并行处理性能。自动目标识别中的应用结果表明 Owing to general fuzzy min-max (GFMM) neural network, which is incapable of automatically learning from any new pattern class, an unsupervised improved arithmetic is proposed. With inheriting the merit of the primary network, which can use the fuzzy input vectors, it rewrited the fuzzy hyperbox membership function. On the other hand, the watchful limit and the switching control for running state in the network were introduced, which combined the ART2 network's unsupervised training ability. The improved GFMM neural network possessed the full capability of unsupervised training and self-adapting adjustment, which showed the good ability of parallel disposal. The results of its actual applications in the realm of automatic target recognition indicat that the neural network has the great potential in many other applications.
出处 《武汉理工大学学报》 CAS CSCD 2004年第10期87-89,共3页 Journal of Wuhan University of Technology
关键词 一般模糊极小极大网 无师训练 模糊隶属度函数 自动目标识别 general fuzzy min-max network unsupervised training fuzzy hyperbox membership function automatic target recognition
  • 相关文献

参考文献3

  • 1Bogdan Gabry, Andrzej Bargila. General Fuzzy Min-Max Neural Network for Clustering and Classification[J]. IEEE Transactions on Neural Networks, 2000,11(3):769~783.
  • 2Carpenter Gail A, Grossberg Stephen. ART2:Self-organization of Stable Category Recognition Codes for Analog Input Patterns[J]. Applied Optics, 1987,26(23):4919~4930.
  • 3Simpson Patrick K. Fuzzy Min-Max Neural Networks-part1: Classification[J]. IEEE Transactions on Neural Networks, 1992,3(5):776~786.

同被引文献13

  • 1侯丽云,赵强,路立平,汲淑丽.基于模糊控制的智能大厦空调系统设计[J].山东建筑工程学院学报,2005,20(2):74-77. 被引量:3
  • 2Ham F M, Kostanic I. Principles of neurocomputing for science and engineering [M]. Beijing: China Machine Press, 2007.
  • 3Simpson P K. Fuzzy min max neural networks--Part 1 ; Classification[J]. IEEE Trans on Neural Networks, 1992, 3(5): 776-786.
  • 4Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification[J]. Soft Computing in Industrial Applications, 2007: 39(1): 179-188.
  • 5Aggarwal C C, Hinneburg A, Keim D A. On the surprising behavior of distance metrics in high dimensional space[C]. Proc of ICDT Conf. London, 2001:420- 434.
  • 6Whisnant K. Dhanekula R, Cross K C. Efficient signal selection for nonlinear system-based models of enterprise servers[C]. Proc of the 3rd IEEE Int Workshop on Engineering of Autonomous Systems. Columbia, 2006: 141-148.
  • 7Finol J,Guo Y K,Jing X D. A rule based fuzzy model for theprediction of petrophysical rock parameters [ J ]. Fuel and en-ergy abstracts,2002,43(3) :97-113.
  • 8Au-Yeung B W H. Multiplication law,classifier value & clas-sifier-raising[ C]//Proc of the 2nd international TEAL work-shop. Taiwan : National TsingHua University ,2004 : 1 -20.
  • 9Zheng Z,Webb G I. Lazy learning of Bayesian rules[ J]. Ma-chine learning,2000( 1) :53-84.
  • 10Webb G I’Boughton J R,Wang Z. Not so naive Bayes:Aggre-gating one dependence estiamtors [ J ]. Machine learning,2005,58(1) :5-24.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部