期刊文献+

多壁碳纳米管储氢的物理吸附特性 被引量:3

The Properties of Hydrogen Physisorbed in Multi Walled Carbon Nanotubes
下载PDF
导出
摘要 采用巨正则蒙特卡罗方法 ,模拟常温、1 0MPa下氢在扶手椅型多壁壁碳纳米管中的物理吸附过程 .氢分子之间、氢分子与碳原子之间的相互作用采用Lennard Jones势能模型 .研究了双壁碳纳米管外 (内 )径固定而内 (外 )径改变时的物理吸附储氢情况 ,发现氢分子主要储存在双壁碳纳米管的管壁附近 ,当双壁碳纳米管的内外管壁间距由 0 .34nm增大到 0 .6 1或 0 .88nm时可有效增加物理吸附储氢量 ,并给出了相应的理论解释 .在此基础上 ,计算了管壁间距为 0 .34、0 .6 1和 0 .88nm时的三壁碳纳米管的物理吸附储氢量 ,并与相同条件下单壁和双壁碳纳米管的物理吸附储氢量作了比较 ,发现多壁碳纳米管的物理吸附储氢量随碳管层数的增加而减小 . The physisorption of hydrogen stored in armchair multi-walled carbon nanotubes (MWCNTs) is simulated by the grand canonical Monte Carlo (GCMC) method on the condition of 10 MPa at normal temperature. Hydrogen-hydrogen and hydrogen-carbon interactions are both modeled with Lennard-Jones potential. The hydrogen storage in double-walled carbon nanotubes (DWCNTs) has been investigated on the condition that the internal or external radius is changed while the other radius remains constant. The results show that hydrogen molecules are mostly absorbed near the tube walls, and the hydrogen storage capacity is improved effectively when the difference between the internal radius and the external radius increases from 0.34 to 0.61 or 0.88 nm. Its simple theoretic explanation also is given. Furthermore, the capacity of hydrogen physisorbed in three-walled carbon nanotubes (TWCNTs) is calculated when the wall-wall distance is 0.34, 0.61 and 0.88 nm respectively. Then its hydrogen storage capacity is compared with that of single-walled carbon nanotubes (SWCNTs) and DWCNTs, and it is discovered that the capacity of hydrogen physisorbed in MWCNTs decreases as the number of wall increases.
机构地区 安徽大学物理系
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2004年第5期572-576,共5页 化学物理学报(英文)
关键词 多壁碳纳米管 储氢 物理吸附 巨正则系综 蒙特卡罗模拟 Multi-walled carbon nanotube, Hydrogen storage, Physisorption, Grand canonical ensemble, Monte Carlo simulation
  • 相关文献

参考文献12

  • 1Sumio Iijima. Nature, 1991, 354: 56
  • 2Ye Y, Ahn C C, Witham C, et al.Appl.Phys.Lett., 1999, 74: 2307
  • 3Seung Mi Lee, Young Hee Lee. Appl.Phys.Lett., 2000, 76: 2877
  • 4Hui-Ming Cheng, Quan-Hong Yang, Chang Liu. Carbon, 2001, 39: 1447
  • 5HuangWanzhen(黄宛真) ZhangXiaobin(张孝彬) KongFanzhi(孔凡志) etal.Chin.J.Chem.Phys.(化学物理学报),2002,15:51-51.
  • 6ChengJinrong(程锦荣) YanHong(闫红) ChenYu(陈宇) etal.Chin.J.Comp.Phys.(计算物理),2003,20:255-255.
  • 7WangYufang(王玉芳) LanGuoxiang(蓝国祥).Chin. J. Light Scat.(光散射学报),1999,11:36-36.
  • 8Farida Darkrim, Dominique Levesque. J.Chem.Phys., 1998, 109: 4981.
  • 9Williams K A, Eklund P C. Chem.Phys.Lett., 2000, 320: 352
  • 10Heermann D W. Computer Simulation Method in Theoretical Physics (理论物理学中的计算机模拟方法), Translated by Qin Kecheng (秦克诚). Beijing (北京): Peking University Press (北京大学出版社), 1996. 107

共引文献1

同被引文献54

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部