期刊文献+

多目标演化算法的收敛性研究 被引量:14

A Multi-Objective Evolutionary Algorithm and Its Convergence
下载PDF
导出
摘要 基于群体搜索的演化算法求解多目标优化问题有独特的优势 ,多目标演化算法已有的研究大多为算法的设计和数值试验效果的比较 ,理论研究往往被忽视 .该文讨论了多目标演化算法的收敛性问题 ,针对一种网格化的简单易于实现的多目标演化算法模型定义了多目标演化算法强收敛和弱收敛等概念 ,给出了判断算法收敛性的一般性条件 ;在变异算子为高斯变异、目标函数连续的条件下 ,证明了提出的算法强收敛 .数值实验验证了算法的可行性和有效性 . Evolutionary algorithms are especially suited for multi-objective optimization problems. Many evolutionary algorithms have been successfully applied to various multi-objective optimization problems, however, theoretical results on multi-objective evolutionary algorithms are scarce. This paper analyzes the convergence properties of the MOEAs. It proposes a simple and pragmatic MOEA model based on grids. The convergence of MOEAs is defined and the general conditions of convergence are provided. It also shows that the proposed (μ+1)-MOEA strongly converges to Pareto optimal set with probability one under suitable condition. Numerical results illustrate that this algorithm is feasible and effective.
出处 《计算机学报》 EI CSCD 北大核心 2004年第10期1415-1421,共7页 Chinese Journal of Computers
基金 国家"八六三"高技术研究发展计划基金 (2 0 0 2AA1Z14 90 ) 广东省自然科学基金博士启动项目基金 (0 43 0 0 15 7)资助
关键词 多目标 演化算法 收敛性 群体搜索 优化 evolutionary algorithms multi-objective optimization convergence
  • 相关文献

参考文献22

  • 1Veldhuizen D. V. , Lamont G. B.. Multiobjective evolutionary algorithms: Analyzing the state-of-the -art. Evolutionary Computation, 2000, 8(2): 125~147
  • 2谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报,2003,26(8):997-1003. 被引量:126
  • 3Schaffer J. D.. Multiple objective optimization with vector evaluated genetic algorithms. In: Grefenstte J.J. ed. Proceeding of the International Conference on Genetic Algorithms and Their Applications. Pittsburgh PA: Morgan Kaufmann Publishers, 1985, 93~100
  • 4Goldberg D. E.. Genetic Algorithms for Search, Optimization,and Machine Learning. MA: Addison-Wesley, 1989
  • 5Srinivas N. , Deb K.. Multi-objective function optimization use non-dominated genetic algorithms. Evolutionary Computation,1994, 2(3): 221~248
  • 6Zitzler E. , Thiele L.. Multiobjective evolutionary algorithms:A comparative case study and the strength Pareto approach.IEEE Transactions on Evolutionary Computation, 1999, 3 (4):257~271
  • 7Knowles J. D. ,Corne D. W.. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2), 149~172
  • 8Deb K. , Agrawal S. , Pratap A. , Meyarivan T.. A fast and elitist multi-objective genetic algorithms: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182~197
  • 9Rudolph G.. On a multi-objective evolutionary algorithm and its convergence to the Pareto set. In: Proceedings of the 15th IEEE Conference Evolutionary Computation, Anchorage AK,1998, 511~516
  • 10Rudolph G., Agapie A.. Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC2000), Piscataway, NJ, 2000, 1010~1016

二级参考文献40

  • 1徐宗本,李国.解全局优化问题的仿生类算法(I)—模拟进化算法[J].运筹学杂志,1995,14(2):1-13. 被引量:39
  • 2李国杰.计算智能:一个重要的研究方向.智能计算机基础研究’94[M].北京:清华大学出版社,1994..
  • 3梁之舜 邓集贤 等.概论论与数理统计[M].北京:高等教育出版社,1988..
  • 4Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 5Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 6Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 7Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 8Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 9Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 10Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.

共引文献179

同被引文献152

引证文献14

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部