期刊文献+

一种用ICA去除瞬态诱发耳声发射伪迹的新方法

A NEW METHOD FOR ELIMINATING ARTIFACT IN TRANSIENT EVOKED OTOACOUSTIC EMISSIONS USING ICA
下载PDF
导出
摘要 如何去除伪迹是瞬态诱发耳声发射检测中一个关键的问题。本研究提出了一种用ICA去除伪迹的新方法。首先用四组线性增长的刺激声在耳道内录音 ,得到的波形是瞬态诱发耳声发射和伪迹的混叠。因为伪迹和瞬态诱发耳声发射是统计独立的 ,而且伪迹随刺激声的变化线性增长 ,而瞬态诱发耳声发射随刺激声的变化非线性增长 ,逐渐趋于饱和 ,所以它们在混叠信号中具有不同的混叠系数。用ICA算法可以将各独立分量及混叠矩阵估计出来 ,伪迹是其中的一个独立分量。然后将伪迹的波形置零后再进行一次混叠 ,便达到了去除伪迹的目的。最后通过与传统的DNLR方法比较 。 How to eliminate the stimulus artifact from the TEOAEs is a key problem in TEOAEs measurement. In this paper, a new method to eliminate stimulus artifact by independent component analysis(ICA) is proposed. First, four linear increasing stimulating sounds are used to obtain the mixed waveforms of TEOAEs and stimulus artifacts. Because stimulus artifact and TEOAEs are independent statistically, and stimulus artifacts are line-increasing with stimulus while TEOAEs are nonlinear increasing with the trend to saturation gradually, their mix coefficients in mixed signals are different. The independent components and mix matrix are estimated using ICA algorithm by taking stimulus artifact as one of the independent components. Thas the artifact are subtracted by remixing the other independent components. Finally, compared with conventional DNLR algorithm, it is proved that the method we proposed is more effective.
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2004年第5期414-418,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 ( 30 0 0 0 0 4 1) 山东省自然科学基金资助项目(y2 0 0 0G13)
关键词 瞬态诱发耳声发射 伪迹 独立分量分析 Algorithms Mathematical models Saturation (materials composition) Waveform analysis
  • 相关文献

参考文献7

  • 1Whitehead ML, Stagner BB, Lonsbury-Martin BL, et al. Measurement of otoacoustic emissions for hearing assessment[J]. IEEE Engineering in Medicine and Biology.1994,13(2):210-226.
  • 2P.Ravazzani,F.Grandori. Evoked otoacoustic emissions: nonlinearities and response interpretation[J]. IEEE Trans on Biomedical Engineering.1993,40(5):500-504.
  • 3Jutten C, Herault J. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic[J]. Signal Processing. 1991,24(1):1-10.
  • 4Tong L, Liu R, Soon VC, et al. Indeterminacy and identifiability of blind identification[J]. IEEE Trans on Circuits and Systems. 1991,38(5): 499-506.
  • 5Hyarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks. 2000,13(4-5): 411-430
  • 6Hyarinen A, Oja EA. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation. 1997,9(7):1483-1492.
  • 7刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576. 被引量:63

二级参考文献3

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部