期刊文献+

基于先验模型的小波图象降噪方法

A Wavelet Denoising Method Based on a Priori Model
下载PDF
导出
摘要 本文提出了一种基于小波系数先验模型的小波降噪技术。这种模型认为整个小波系数空间由服从零均值高斯分布的局部区域组成 ,具有空间自适应和局部化的性质 ,模型的参数可以利用实际观测数据 (包含噪声成分 )来估计。基于估计得到的小波系数先验模型可以设计小波域上的经验Wiener滤波器 ,并应用到图象降噪任务中。实验结果表明 ,此种方法可以取得比较好的降噪效果。 A wavelet denoising method based on a priori model is proposed in this paper. This model sees the whole wavelet coefficient space is composed of individual local areas, which obey the Gaussian distribution with zero mean. So this wavelet coefficient model is spatially adaptive and local. The parameters of this model are estimated based on the observed noisy data. Then the wavelet domain Wiener filter is designed and applied in image denoising. Experimental results show this method can get excellent effect.
作者 甘亚莉 涂丹
出处 《计算机工程与科学》 CSCD 2004年第9期39-40,78,共3页 Computer Engineering & Science
关键词 先验模型 小波变换 图象降噪 WIENER滤波器 空间自适应 图象处理 wavelet transform a priori model spatially adaptive local Wiener filter image denoising
  • 相关文献

参考文献5

  • 1Mallat S G. A Theory for Multi-resolution Signal Decomposition: The Wavelet Representation[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989,11(7): 674 - 693.
  • 2Lopresto S, Ramchandran K, Orchard M T. Image Coding Based Mixture Modeling of Wavelet Coefficients and a Fast EstimationQuantization Framework [ A ]. Proc IEEE Data Compressing Conf[C]. 1997.221 - 230.
  • 3Moulin P, Liu J. Analysis of Multiresolution Image Denoising Schemes Using Generalized-Gaussian and Complexity Priors [ J].IEEE Trans Information Theory, Special Issue on Multiscale Analysis, 1999, 45(3): 909 - 919.
  • 4Banham M R, Katsaggelos A K. Spatially Adaptive Wavelet-Based Multiscale Image Restoration[J]. IEEE Trans Image Processing,1996, 5(4): 619 - 634.
  • 5Malfait M, Roose D. Wavelet-Based Image Denoising Using a Markov Random Field a Priori Model[J]. IEEE Trans Image Processing, 1997, 6(4): 549 - 565.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部