期刊文献+

一种改进的基于倒谱特征的带噪端点检测方法 被引量:13

A Modified Endpoint Detection Method of Noisy Speech Based on Cepstral
下载PDF
导出
摘要 影响语音识别性能的一个关键因素是端点检测的准确性。实际应用中的信噪比较低,使得某些高信噪比下性能好的检测算法不能有效地工作,影响系统的识别率。该文针对基于倒谱特征的带噪端点检测算法提出了3点改进:(1) 将语音信号经滤波后分成高低频两子带,分别进行分析;(2) 用LPC美尔倒谱特征LPCCMCC代替常规倒谱特征作为特征参数;(3) 改进噪声估计,使其具有自适应性。实验结果表明本方法在低信噪比下有较好的检测性能。 A major factor influencing the capability of speech recognition(SR) systems is the accuracy of endpoint detection .Some good detection algorithms with a high SNR can not take effect in practical use because of small SNR ,which may reduce the recognition rates. In this paper, three points are proposed to modify the endpoint detection method of noisy speech based on cepstral. The first is to filter the speech signal into two frequency bands of high and low, then analyze them respectively; The second is to take the LPC Mel cepstral coefficient (LPCCMCC) as feature parameters instead of normal cepstral coefficient ; The last point is to make it more adaptive by improving the estimation of noise. The experiments show good detection capability with a low SNR.
出处 《计算机工程》 CAS CSCD 北大核心 2004年第19期85-87,共3页 Computer Engineering
关键词 端点检测 LPC美尔倒谱系数 语音识别 滤波 Mel倒谱距离 Endpoint detection LPCCMCC Speech recognition Filter Mel cepstral distance
  • 相关文献

参考文献3

二级参考文献1

  • 1Lee C H,Automatic Speech and speaker recognition-advanced topics,1996年

共引文献70

同被引文献117

引证文献13

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部