期刊文献+

岩石红外比辐射率简易测定方法及意义 被引量:2

A SIMPLE METHOD FOR MEASURING EMISSIVITY OF ROCK AND ITS SIGNIFICANCE
下载PDF
导出
摘要 利用地表辐射 (亮温 )求取地面温度需要通过岩石比辐射率进行换算。地球上的岩石千差万别 ,即使岩石学上分类一致的岩石 ,比辐射率也可以显著不同 ,需要大量的比辐射率时 ,现有测量方法显得过于复杂或环境要求过高 ,发展简便的比辐射率测量方法十分必要。实际上 ,在室温情况下 ,比辐射率为常数 ,可以通过测量一系列的温度和相应的辐射值 ,仪器本身的辐射和环境辐射可直接当作未知量参加反演 ,最终利用最小二乘法拟合获得比辐射率 ,大大降低了测量的难度。文中测量了1 6种岩石标本的比辐射率 ,方差一般保持在 0 .0 1左右 ,大多数 <0 .0 1 ;线性拟合的相关系数均 >0 99。 The calculation of land surface temperature from thermal radiation requires the emissivity value of rock. However, there are lots of rocks in the Earth, and even the rocks of the same type may have obviously different emissivity. Recent methods for measuring the emissivity of rock are relatively complex, and most of them depend excessively on environmental condition. Therefore, when plenty of emissivity data are needed, it is necessary to develop a simple method of measurement. In fact, emissivity is a constant at room temperature, and the radiation of instrument itself and environment can enjoin the inversion as an unknown quantity. Then emissivity can be obtained by least square method through measuring the radiation of rock in a series of temperature and radiation conditions. On the basis of this method, the emissivities of 16 rock samples were measured. The square error of the results keeps in about 0.01, mostly less than 0.01, and the correlation coefficient of all linear fits is larger than 0.99.
出处 《地震地质》 EI CSCD 北大核心 2004年第3期512-518,共7页 Seismology and Geology
基金 国家自然科学基金重大研究计划 (90 2 0 2 0 1 8) 中国地震局专项经费共同资助
关键词 岩石学 比辐射率 岩石标本 最小二乘法 emissivity, rock sample, method of measurement
  • 相关文献

参考文献7

二级参考文献43

  • 1[1]Nicodemus F. E. Directional reflectance and emissivity of an opaque surface[J]. Appl. Opt., 1965, (4):767-773.
  • 2[2]Thomson J. L., Salisbury J. W. The Mid-infrared reflectance of mineral mixtures(7-14um) [J]. Remote Sens. Environ., 1993, 45:1-13;
  • 3[3]Zhang Y., Zhang C., Klemas V. Quantitative measurements of ambient radiation emissivity and truth temperature of a greybody:methods and experimental results[J]. Applied Optics, 1986,25(20):3683-3688.
  • 4[4]Sutherland R.A. Broadband and spectral emissivities (2-18um) of some natural soils and vegetation[J]. American Meteorological Society, 1986, 199-203.
  • 5[5]Salisbury J.W., D'Aria D.M. Infrared (8-14um) remote sensing of soil particle size[J]. Remote Sens. Environ., 1992, 42:157-165.
  • 6[6]Salistury J.W., Wald A., D'Aria D.M. Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements[J].J. Geophys. Res., 1994, 99(B6): 11,897-11,911.
  • 7[7]Griggs M. Emissivities of natural surfaces in the 8- to 14-micon spectral region[J]. J. Geophys. Res., 1968, 73: 7545-7551.
  • 8[8]Nerry F., Labed J.,.Stoll M.P.Emissivity signatures in the thermal infrared band for remote sensing: calibration procedure and method of measurement[J]. Appl. Optics, 1988, 27:758-764.
  • 9[9]Hepplewhite C.L. Remote observation of the sea surface and atmosphere: the oceanic skin effect[J]. Int. J. Remote Sensing, 1989,10:801-810.
  • 10[10]Barton I.J., Talashima T. An AVHRR investigation of surface emissivity near lake Eyre Australia[J]. Remote Sens. Environ., 1986,20:153-163.

共引文献68

同被引文献11

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部