期刊文献+

关于P-正则半群的强P-同余格的注记 被引量:5

A Note on Strong P-Congruence Lattices of P-Regular Semigroups
下载PDF
导出
摘要 证明了P 正则半群S(P)的强P 同余格与S(P)上强P 同余对所成的格同构;在S(P)的强P 同余格上定义了θ 关系,刻画了具有θ 关系的两个强P 同余的联和交的强P 核正规系,并证明了S(P)的强P 同余格与强P 核正规系格同构.所得结论是当前一些文献中已有结果的深化. Let S(P) be a PBX-regular semigroup. In this paper, it is proved that the strong P-congruence lattice and strong P-congruence-pair lattice of S(P) are isomorphic. Moreover the θ-relation is defined by so-called c-trace on the strong P-congruence lattice Λ_P(S). Further, a characterization of strong P-kernel normal systems is given for the join and meet of two strong P-congruences which are in the same θ-class. Finally, it is also proved that the strong P-congruence lattice and the lattice of strong P-kernel normal systems on S(P) are isomorphic. The results obtained here deepened some relative results in recent literature.
作者 高增辉
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第5期471-475,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 P-正则半群 强P-同余 格同构 p-关系 强p-核正规系 P-regular semigroup Strong P-congruence Lattice isomorphism θ-relation Strong P-kernel normal system
  • 相关文献

参考文献8

  • 1Yamada M, Sen M K. P-regularity in semigroups[J]. Mem Fac Sci Shimane Univ,1987,21:47-54.
  • 2Yamada M, Sen M K. P-regular semigroups[J]. Semigroup Forum,1989,39:157-178.
  • 3Zheng H W. Strong P-congruences on P-regular semigroups[J]. Semigroup Forum,1995,51:217-223.
  • 4Reilly N R, Scheiblich H E. Congruences on regular semigroups[J]. Pacific J Mathematics,1967,23:349-360.
  • 5Imaoko T, Okamoto Y. Congruences on P-regular semigroups[A]. Proceedings of the International Symposium on the Semigroup Theory[C]. Kyto Japan,1990.109-123.
  • 6Goldie A M. The Jordan-Holder theorems for general abstract algebras[J]. Proc London Math Sco,1950,52(2):107-131.
  • 7喻秉钧,余时伟,廖群英.弱逆半群上最大幂等元分离同余和群同余[J].四川师范大学学报(自然科学版),2001,24(3):219-223. 被引量:8
  • 8王坤仁.关于有限群的s-半正规子群I(英文)[J].四川师范大学学报(自然科学版),2003,26(6):551-554. 被引量:10

二级参考文献18

  • 1王坤仁.p-闭群的若干充要条件[J].四川师范大学学报(自然科学版),1994,17(1):26-29. 被引量:3
  • 2王坤仁.极小子群与幂零性[J].四川师范大学学报(自然科学版),1995,18(2):16-20. 被引量:19
  • 3王坤仁.Sylow子群皆半正规的有限群[J].四川师范大学学报(自然科学版),1995,18(3):1-4. 被引量:9
  • 4玉坤仁.子群皆半正规的有限群[J].四川师范大学学报(自然科学版),1996,19(6):40-44. 被引量:6
  • 5[1]Srinivasan B R.Weakly inverse semigroups[J].Math Ann,1968,176:324~333.
  • 6[2]Brown M R,Hardy W D,Painter R J.A note on a paper of Srinivasan[J].Math Ann,1970,186:34~35.
  • 7[3]Nambooripad K S S,Staraman Y.A note on weakly inverse semigroups[J].J Indian Math Soc,1976,40:145~151.
  • 8[4]Madhavan S.On bisimple weakly inverse semigroups[J].Pacific J Math,1980,90(2):397~409.
  • 9[5]Howie J M.Fundamentals of Semigroup Theory[M].Oxford:Larendon Press,1995.
  • 10[6]Hall T E.On regular semigroups[J].J Algebra,1973,24:1~24.

共引文献14

同被引文献43

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部