摘要
给出双解析函数含参变未知函数的Riemann边值问题及其正则型与非正则型的提法.基于双解析函数的正则型与非正则型Riemann边值问题,讨论了双解析函数含参变未知函数的Riemann边值问题正则型与非正则型情况的可解性,得到了该边值问题的可解性结论:正则型问题的一般解具有2κ+1个自由度,非正则型问题的一般解具有2(κ-μ)+1.
The formulation of a class of Riemann boundary value problems with parametic unknown functions for bianalytic functions is proposed, its normal and nonnormal cases are also proposed. On the basis of the Riemann boundary value problems of normal and nonnormal cases for bianalytic functions, the solvability of Riemann boundary value problems of normal and nonnormal cases with parametric unknown functions for bianalytic functions is discussed. The theorems of solvability of the problems are obtained:the general solution of the normal problem has 2κ+1 degree of freedom, and the general solutiion of the nonnormal problem has 2(κ-μ)+1 degree of freedom.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
2004年第5期481-485,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(19571010)资助项目