期刊文献+

一类耦合非线性Klein-Gordon方程组整体解存在的充分条件 被引量:3

A Sufficient Condition for the Existence of Global Solutions to Coupled Nonlinear Klein-Gordon Equations
下载PDF
导出
摘要 研究一类耦合非线性Klein Gordon方程组的柯西问题.在已有结果(Math.Meth.Appl.Sci.,2003,26:11~25.)的基础上,根据初值与基态的关系,通过尺度讨论,得出了该柯西问题整体解存在的充分条件,完善了已有结果. The Cauchy problem for a class of coupled nonlinear Klein-Gordon equations is studied. Based on (Math. Meth. Appl. Sci.,2003,26:11~25.), according to the relation between the Cauchy data and the ground state, a sufficient condition for the existence of global solutions of the Cauchy problem is obtained by scaling argument, the result improve some well-known results.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第5期486-488,共3页 Journal of Sichuan Normal University(Natural Science)
关键词 耦合 K1ein-Gordon方程组 整体解 尺度讨论 基态 Coupled Klein-Gordon equations Global solution Scaling argument Ground state
  • 相关文献

参考文献13

  • 1Georgiev V. Global solution of the system of wave and Klein-Gordon equations[J]. Math Z,1990,203:683-698.
  • 2Simon J C H, Taflin E. Wave operators and analytic solutions for systems of nonlinear Klein-Gordon equations and of nonlinear Schrodinger equations[J]. Comm Math Phys,1985,99:541-562.
  • 3Wang B X. On existence and scattering for critical and subcritical nonlinear Klein-Gordon equations in Hs[J]. Nonlinear Anal TMA,1998,31:573-583.
  • 4Zhang J. Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations[J]. Nonlinear Analysis,2002,48:191-207.
  • 5Zhang J. On the standing wave in coupled nonlinear Klein-Gordon equations[J]. Math Meth Appl Sci,2003,26:11-25.
  • 6Berestycki H, Cazenave T. Instabilité des états stationnaires dans le équations de Schrodinger et de Klein-Gordon non linéairees[J]. C R Acad Sci Paris,1981,293:489-492.
  • 7Ozawa T, Tsutaya K, tsutsumi Y. Normal for and global solutions for the Klein-Gordon-Zakharov equations[J]. Annal de I'institut Henri Poincaré,1995,12(4):459-503.
  • 8舒级,张健.一类带调和势的非线性Schrdinger方程解的爆破性质[J].四川师范大学学报(自然科学版),2002,25(1):32-35. 被引量:25
  • 9舒级,张健.一类带调和势的非线性Schrdinger方程[J].四川师范大学学报(自然科学版),2002,25(2):129-131. 被引量:18
  • 10张健,舒级.低维空间中带调和势的非线性Schrdinger方程[J].四川师范大学学报(自然科学版),2002,25(3):226-228. 被引量:13

二级参考文献65

  • 1Tsutsumi Y, Zhang J. Instability of optical solutions for two-wave interaction model in cubic nonlinear medial[J]. Adv Math Sci Appl,1998,8(2):691-713.
  • 2Oh Y G. Cauchy problem and Ehrenfest's law of nonlinear Schr(o)dinger equation with potentials[J]. J Diff Equa,1989,81:255-274.
  • 3Cazenave T. An Introduction to Nonlinear Schr(o)dinger Equations[M]. Riede Janerro:Textos de Metodos Matematicos,1989.48-73.
  • 4Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of lithium:observation of limited condensate number[J]. Phys Rev Lett,1997,78:985-989.
  • 5Dalfove F, Giorgini S, Pitaevskii L P. Theory of Bose-Einstein condensation in trapped gases[J]. Rev Modern Phys,1999,71(3):463-512.
  • 6Kagan Y, Muryshev A E, Shlyapnikov G V. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length[J]. Phys Rev Lett,1998,81(5):933-937.
  • 7Wadati M, Tsurumit T. Critical number of atoms for the magnetically trapped Bose-Einstein condensation with negative s-wave scattering length[J]. Phys Lett A,1998,247:287-293.
  • 8Saito H, Ueda M. Inter-mittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction[J]. Phys Rev Lett,2001,86(8):1406-1409.
  • 9Baym G, Pethick C J. Ground state properties of magnetically trapped Bose-condensed rubidium gas[J]. Phys Rev Lett,1996,76(1):6-9.
  • 10Dalfove F, Stringari S. Bosons in anisotropic traps:ground state and vortices[J]. Phys Rev A,1996,53(4):2477-2485.

共引文献41

同被引文献25

  • 1曹瑞,张健.耦合非线性Klein-Gordon方程组的周期解[J].四川师范大学学报(自然科学版),2006,29(2):158-160. 被引量:9
  • 2舒级,张健.具阻尼的Gross-Pitaevskii方程在二维空间中的坍塌性质[J].四川师范大学学报(自然科学版),2006,29(1):16-18. 被引量:4
  • 3蒋毅,蒲志林,孟宪良.一类非线性Schrdinger方程组的整体解和爆破解[J].四川师范大学学报(自然科学版),2006,29(1):22-25. 被引量:4
  • 4Lions J L.著.非线性边值问题的一些解法[M].郭柏灵,汪礼艿译.广州:中山大学出版社,1992:10-15.
  • 5Georgiev V.Global solution of system of wave and Klein Gordon equations[J].Math Z,1990,203:683-689.
  • 6Van Horssen W T.An asymptotic theory for a class of initial borndary value problems for weakly nonlinear wave equations with an application to a model of the galloping oscillation of overhead to a model transmission lines[J].SIAM J Appl Math,1988,48(6):1227-1243.
  • 7Segal I E.Nonlinear partial differential equations in quantum field theory[J].Proc Sympos Appl Math,1965,17:210-226.
  • 8Makhankov V G.Dynamics of classical solitons[J].Physics Reports,1978,35(1):1-128.
  • 9Mirande M,Medeiros L A.On the existence of global solutions of a coupled nonlinear Klein-Gordon equations[ J ].Funk Ekvac,1987,30:147-161.
  • 10Pagne L E.Saddle points and instability of nonlinear hyperbolic equations[J].Israel J Math,1975,22(3-4):273-303.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部