期刊文献+

一类非线性双曲方程的局部解 被引量:4

The Local Solution for a Class of Nonlinear Hyperbolic Equation
下载PDF
导出
摘要 研究如下非线性双曲方程的初边值问题utt-m(‖ u‖22)Δu-γΔut=β|u|αu,其中α>0,γ 0,β>0,α,β,γ均为常数.利用Galerkin方法和改进的势井理论:当m(s)和α满足一定的条件,且初值充分小时,证明了该方程局部解的存在性和唯一性. In this paper, we consider an initial-boundary value problem of the following nonlinear hyperbolic equationu_tt-m(‖u‖~2_2)Δu-γΔu_t=β|u|_αu.By using of Galerkin method and modified potential well theory, the well-posedness theory is established under some assumptions of m(s), and initial data.
作者 严勇 姚莉
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第5期497-500,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 非线性双曲方程 局部解 存在性 唯一性 GALERKIN方法 Nonlinear hyperbolic equation Local solution Existence Uniqueness Galerkin method
  • 相关文献

参考文献5

二级参考文献4

  • 1Ronald B G,Partial Differential Equations of Mathematical Physics and Integral Equations,1998年
  • 2Hosoya H, Yamada Y. On some nonlinear wave equation 1: local existence and regularity of solutions. J. Fac. Sci. Univ. Tokyo Sect. IA. Math 1991, 38:225~238
  • 3Lions J L. Queleques Method de Resolution des Problemes aux Limites Nonlinearies. Dunod. Gauthier Villars. Paris, 1969
  • 4Friedman A. Partial Differential Equations. Krieger Publishing Company, Malabar, Florida, 1983

共引文献13

同被引文献14

  • 1Ikehata R,Suzuki T.Stable and unstable sets for evolution equations of parabolic and hyperbolic type[J].Hiroshima Math J,1996,26:291-319.
  • 2Georgiev V,Todorova G.Existence of a solution of the wave equation with nonlinear source damping and terms[J].J Diff Equat,1994,109:295-308.
  • 3Aassila M.Global existence of solution to wave equation with damping and source terms[J].Differential and Integral Equation,2001(14):1301-1314.
  • 4Kirchhoff G.Vorlesungenüber Mechnik[M].Leipzig:Teubner,1883.
  • 5Kajitani K,Yamaguti K.On global real analytic solution of the degenerate Kirchhoff equation[J].Ann Sc Sup Pisa,1994(4):279-297.
  • 6Kajitani K, Yamaguti K. On global real analytic solu- tions of the degenerate Kirchhoff equation [ J ]. Ann. Sc. Sup. Pisa , 1994(4) : 279 -297.
  • 7Hirosa F. Global solvability for the degenerate Kirchhoff equation with real -analytic data in Rn [J]. Tsukuba J. Math. , 1997 (21) :483 - 503.
  • 8Kirchhoff G. Vorlesungen tiber mechnik [ M ]. Teubner, Leipzig, 1883.
  • 9Todorova G. Stable and unstable sets for the cauchy problem for a nonlinear wave equation damping and source terms [ J ]. J. Math. Anal. Appl. 1999,239 : 213 -226.
  • 10Todorova G. Cauchy problem for a nonlinear wave equa-tion with nonlinear damping and source terms [ J ]. Non- liear Anal. , 2000,41 : 891 -905.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部