期刊文献+

并行单元归结 被引量:1

Parallel Unit Resolution
下载PDF
导出
摘要 给出了基于神经网络的单元归结算法.首先将子句集S表示为δ形,并且用算子对(⊙, )引入两种类型的神经元,然后用这两种神经元构造子句集S的神经网络结构,而后给出基于Horn子句集的神经网络的归结算法,最后证明了该算法的完备性,并用实例进行了验证. In this paper, a unit resolution based on neural network is proposed. We first express a clause set S in σ-form and introduce two kinds of neurons by a couple of operator (⊙,). Then we use the two neurons to construct a neural network structure of clause set S, and give the resolution algorithm on NN for Horn clause set S. Finally, we prove the completeness of the algorithm based on this resolution and give a practical example to check the theory.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第5期501-504,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 归结 神经网络 Horn子句集 完备性 Resolution Neural network Horn clause set Completeness theorem
  • 相关文献

参考文献8

  • 1Robinson J A. The generalized resolution principle[J]. Machine Intelligence,1968,(3):77-94.
  • 2Loveland D W. Automated Theorem Proving:A Logic Basis[M]. North-Holland:Amsterdam,1978.
  • 3Wos L. Automated Reasoning:Basic Research Problems[M]. Prentice-Hall:Englewood Cliffs,1988.
  • 4Zheng P, Liu J, Yang X. A kind of resolution by deleting in fuzzy neural network[A]. Proceeding East West Fuzzy Colloquium[C]. Germany:Zittau,2000.238-244.
  • 5裴峥,黄天民.模糊神经网络的一种混合递推学习算法[J].模糊系统与数学,1999,13(4):58-64. 被引量:5
  • 6Ding L Y, Shen Z L. Parallel fuzzy resolution inference on fuzzy neural logic network[J]. Second IEEE International Conference on Fuzzy Systems,1993,(1):82-87.
  • 7Xia S F, Qing M, Yang X. Neural network resolution on Horn clause set[J]. Proceedings of the Second International on Machine Learning and Cybernetics, 2003,(11):1682-1686.
  • 8夏世芬,黄天民,徐扬.子句集的神经网络归结(英文)[J].模糊系统与数学,2004,18(2):62-67. 被引量:2

二级参考文献2

共引文献5

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部