期刊文献+

利用梯度矩进行三维目标描述 被引量:1

DESCRIPTION OF 3D OBJECT WITH GRADIENT MOMENT
原文传递
导出
摘要 对目标进行合理的描述是进行目标识别的基础.对于三维目标来说,目标表面梯度反映了目标形状的三维信息.对目标表面梯度进行描述也就是对目标的三维形状进行描述.基于这一思想,本文提出了梯度矩的概念,给出了梯度矩的定义,并讨论了梯度矩的不变性.利用梯度矩可以把三维空间中的问题转化到二维空间中去,这样不仅显著减少了计算复杂度,也可以利用成熟的二维矩理论进行研究. Reasonable description of objects is the foundation of object recognition. Because the surface gradient reflects the 3D information of object shape, the description of object surface gradient means the description of the object shape itself. In this paper the conception and definition of gradient moment is proposed, and its invariant attribution is discussed. By using this proposed gradient moment, the problem in 3D domain can be transformed into 2D domain. Thus, not only the complexity of moment computation is reduced, but also the traditional 2D moment theory can be used in researches.
作者 许东 徐文立
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第3期352-356,共5页 Pattern Recognition and Artificial Intelligence
基金 中国博士后科学基金(No.2003034156)
关键词 梯度 矩不变量 目标描述 Gradient Moment Moment Invariant Object Description
  • 相关文献

参考文献9

  • 1Hu M K. Visual Pattern Recognition by Moment Invariants. IRE Trans on Information theory, 1962,IT-8:179-187.
  • 2Prokop R J, Reeves A P. A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition. CVGIP: Graphical Models and Image Procession, 1992, 54(4):438-460.
  • 3Teague M R. Image Analysis via the Gencral Theory of Moments. Journal of Optical Society of America, 1980,70:920-930.
  • 4Abu-Mostafa Y S, Psaltis D. Recognitive Aspects of Moment Invariants. IEEE Trans on Pattern Recognition and Machine Intelligence, 1984,6:698-706.
  • 5Reeves P, Rostampour A. Shape Analysis of Segmented Objects Using Moments. In: Proc of the IEEE Computer Society Conference on Pattern Recognition and Image Processing. Dallas, Texas, USA, 1981,171-174.
  • 6Sadjadi A, Hall E L. Three-Dimensional Monment Invariants. IEEE Trans on Pattern Recognition and Machine Intelligence, 1980,2(2):127-136.
  • 7Lo H, Don H S. 3-D Moments Forms: Their Construction and Application to Object Identification and Positioning. IEEE Trans on Pattern Recognition and Machine Intelligence. 1989,11(10):1053-1064.
  • 8汪力新,戴汝为.三维仿射不变距[J].模式识别与人工智能,1998,11(2):133-139. 被引量:4
  • 9Alexander G M. n-Dimensional Moment Ivariants and Conceptual Mathernatical Theory of Recognition n-Dimensional Solids. IEEE Trans on Pattern Recognition and machine Intelligence, 1998,20(8):819-831.

二级参考文献2

共引文献3

同被引文献7

  • 1夏永泉,刘正东,杨静宇.一种基于正交矩的立体匹配方法[J].系统仿真学报,2005,17(9):2082-2084. 被引量:5
  • 2邓志东,牛建军,张竞丹.基于立体视觉的三维建模方法[J].系统仿真学报,2007,19(14):3258-3262. 被引量:16
  • 3R Campbell, P Flynn. A survey of flee-form object representation and recognition techniques [J]. Computer Vision and Image Understanding (S1077-3142), 2001, 81 (2) : 166-210.
  • 4Sadjadi F A, Hall E L. Three dimensional moment invariants [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1980, 2(3): 127-136.
  • 5Lo C H, Don H S. 3D moment forms: their construction and application to object identification and positioning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162- 8828), 1989, 11(10): 1053-1064.
  • 6Mamistvalov Alexander (3. N-Dimansional Moment Invariants and Conceptual Mathematical Theory of Recognition N-Dimensional Solids [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1998, 8(20): 819-831.
  • 7M Nowotni, R Klein. Shape Retrieval using 3D Zemike descriptors [J]. Compouter-Aided Design (S0010-4485), 2004, 36(11): 1047-1062.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部