期刊文献+

一种新的多类分类算法 被引量:2

A NEW MULTI-CLASS CLASSIFICATION ALGORITHM
原文传递
导出
摘要 多类分问题通常采用多个标准的二分类支持向量机来求解,在这种情况下,需要解多个二次规划问题.为了简化多类分类问题带来的计算复杂性,本文根据一类分类思想提出一种多类分类算法,所给算法通过引入核函数能够独立地对每一类样本形成一个紧致的优化区域,从而达到分类的目的.人工及实际数据库的仿真实验表明所给算法在保持良好的分类精度条件下,能有效降低程序的运行时间. The multi-class classification problem is commonly solved by decomposition to several binary problems for which the standard Support Vector Machine(SVM)can be used. In this case, many quadratic programming problems need to be solved. In order to reduce computation complexity about multi-class classification problems, a new multi-class classification algorithm based on one-class classification idea is proposed. It can form a compact boundary about every single class sample by using kernel functions and accordingly obtain the aim of classification. Simulation is conducted on artificial and real database, which shows that the proposed method can guarantee the classification precision and reduce the running time of program.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第3期357-361,共5页 Pattern Recognition and Artificial Intelligence
基金 广东省自然科学基金(No.032353)
关键词 支持向量机 多类分类 一类分类 核函数 Support Vector Machine Multi-Class Classification One-Class Classification Kernel Function
  • 相关文献

参考文献5

  • 1Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
  • 2Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 1998, 2(2) :121 - 167
  • 3Bennett K, Blue J. A Support Vector Machine Approach to Decision Trees. In: Proc of the IEEE International Joint Conference on Neural Networks. Anchorage, Alaska, USA, 1998, 2396-2401
  • 4Weston J, Watkins C. Multi-Class Support Vector Machines. Technical Report. CSD-TR-98-04, Deparmaent of Computer Science, Royal Holloway University of London, England, 1998
  • 5Tax D. One-Class Classification. Ph. D Thesis. Delft University of Technology, Delft, Netherlands, 2001

同被引文献24

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Vapnik V N. Statistical Learning Theory [M]. New York, Wiley,1998
  • 3Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [R]. Knowledge Discovery and Data Mining, 1998,2(2) :121~167
  • 4Bennett K, Blue J. A support vector machine approach to decision trees [R]. Rensselaer Polytechnic Institute, Troy, NY: R. P. I Math Repot, 1997. 97~100
  • 5Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multiclass Classification. In: Solla S A, Leen T K, Muller K R, eds. Advances in Neural Information Processing System 12 (NIPS 1999), Pittsburgh, PA, USA, Cambridge, MA, MIT Press, 1999. 547~553
  • 6Weston J,Watkins C. Multi-class Support Vector Machines [R]:[CSD-TR-98-04]. Royal Holloway University of London, 1998
  • 7Scholkopf B, Williamson R, Smola A, et al. Support Vector Method for Novelty Detection. http: ∥ citeseer. nj. nec. com/400144. html
  • 8Ratsch G,Scholkopf B, Mika S, et al. SVM and Boosting: One Class. http: ∥citeseer. nj. nec. com/516656. html
  • 9Tax D. One-class classification: [PhD thesis]. Delft University of Technology, Netherlands, 2001
  • 10Mangasarian O L. Arbitrary-norm separating plane [J]. Operation Research Letters, 1999, 24(1): 15~23

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部