摘要
本文指出了Erdos,Kroó和Szabados的一个重要引理的证明中出现的错误,并纠正其错误,还给出了此引理的两个应用,其中之一指出当第一类Chebyshev结点产生很小的扰动时,相应的Hermite—Fejér插值仍能保证对任意连续函数的一致逼近性,从而拓广了Fejér及Saxena的经典结论。
In this paper ,some mistakes in the proof of a important lemma of Erdos ,kroo andSzabados are pointed out,and a correct proof is given. We give out also two applications of this lemma,one of which shows that when the distrubence is quite small,the Hermite - Fejer interpolation polynomial based on the disturbed Chebyshev nodes of the first kind may convergent uniformly for all continuous functions. This extends the classical results of Fejer and Saxena.
出处
《河南大学学报(自然科学版)》
CAS
1993年第2期33-38,共6页
Journal of Henan University:Natural Science
关键词
逼近阶
插值
切比雪夫结点
Chebyshev nodes, Disturbed chebyshev nodes, La grange basic polynomial, Hermite - Fejer interpolation .Order of approximation.