期刊文献+

集值变分不等式的例外簇及解的存在性问题

Exceptional family of elements and an existence theorem for multi-valued variational inequalities
原文传递
导出
摘要 定义了一个新例外簇概念,且利用例外簇来研究集值变分不等式解的存在性条件以及无例外簇条件. A new concept of exceptional family of elements for multi-valued varitional inequalities was introduced. Applied the new concept to deal with the existence problem of the solution for multi-valued variational inequalities and studied the conditions of a function to be without exceptional family.
作者 谷爱铃
出处 《福州大学学报(自然科学版)》 CAS CSCD 2004年第5期526-529,共4页 Journal of Fuzhou University(Natural Science Edition)
关键词 例外簇 集值映射变分不等式 伪单调 exceptional family of elements multi-valued variational inequalities pseudomonotone operators
  • 相关文献

参考文献11

  • 1Smith T E. A solution condition for complementary, with an application to spatial price equilibrium[ J]. Appl Math Computation,1984, 15(1): 61-69.
  • 2Obuchowska W T. Exceptional families and existence results for nonlinear complementarity problem[ J]. J Gobal Optim, 2001,19: 183- 198.
  • 3Isac G. Exceptional families of elements for continuous functions: some applications to complementarity theory[J]. J Global Optim, 1999, 15: 181- 196.
  • 4Isac G. Exceptional families, topological degree and complementarity problems[ J]. J Global Optim, 1997, 10: 207- 225.
  • 5张立平,韩继业,徐大川.变分不等式问题的解的存在性[J].中国科学(A辑),2000,30(10):893-899. 被引量:9
  • 6Zhao Yun- bin. Exceptional families and finite - dimensional: variational inequalities over polyhedral convex sets[J]. Appl Math Computation, 1997, 87(1): 111- 126.
  • 7Zhao Yun- bin. Existence of a solution to nonlinear variational inequality under generalized positive homogeneity[J]. Oper Res Letters, 1999, 25: 231-239.
  • 8Zhao Y B, Han J Y, Qi H D. Exceptional families and existence theorems for variational inequality problems[J]. J Optim Theory Appl, 1999, 101(2): 475-495.
  • 9Isac G, Kalashnikov V V. Exceptional family of elements, leray- schauder alternative, pseudomonotone operators and complementarity[J]. J Optim Theory Appl, 2001, 109(1): 69 - 83.
  • 10Ben- el - Mechaiekh, H, Chebbi S, Florenzano M A. Lerayschauder type theorem for approximable maps: simple proof[J].Proceedings of the American Mathemamatical Society, 1998, 126: 2 345 - 2 349.

二级参考文献10

  • 1Y. B. Zhao,J. Y. Han,H. D. Qi. Exceptional Families and Existence Theorems for Variational Inequality Problems[J] 1999,Journal of Optimization Theory and Applications(2):475~495
  • 2Y.B. Zhao,J. Han. Exceptional Family of Elements for a Variational Inequality Problem and its Applications[J] 1999,Journal of Global Optimization(3):313~330
  • 3G. Isac,W. T. Obuchowska. Functions Without Exceptional Family of Elements and Complementarity Problems[J] 1998,Journal of Optimization Theory and Applications(1):147~163
  • 4G. Isac,V. Bulavski,V. Kalashnikov. Exceptional Families, Topological Degree and Complementarity Problems[J] 1997,Journal of Global Optimization(2):207~225
  • 5Patrick T. Harker,Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] 1990,Mathematical Programming(1-3):161~220
  • 6Masakazu Kojima. A unification of the existence theorems of the nonlinear complementarity problem[J] 1975,Mathematical Programming(1):257~277
  • 7Jorge J. Moré. Classes of functions and feasibility conditions in nonlinear complementarity problems[J] 1974,Mathematical Programming(1):327~338
  • 8B. C. Eaves. On the basic theorem of complementarity[J] 1971,Mathematical Programming(1):68~75
  • 9S. Karamardian. Generalized complementarity problem[J] 1971,Journal of Optimization Theory and Applications(3):161~168
  • 10Philip Hartman,Guido Stampacchia. On some non-linear elliptic differential-functional equations[J] 1966,Acta Mathematica(1):271~310

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部