期刊文献+

利用反义基因沉默策略构建水稻突变体库及突变体筛选 被引量:3

Generation of a rice mutant library by shotgun antisense gene silencing and mutant screening
下载PDF
导出
摘要 尝试利用鸟枪反义基因沉默策略构建水稻突变体库.利用水稻反义cDNA文库转化粳稻品种中花11,获得了来源于105块潮霉素(Hm)抗性愈伤组织的1486个转化植株.随机选择来源于11个独立转化系的335个T0植株进行Hm离体叶片筛选,结果表明所有植株均呈抗性,并且与PCR检测结果相吻合,说明T0植株中不存在假转化体.Southernblot分析结果表明T0植株大部分为单位点整合.T0及T1代转化植株均呈现了一些形态变异,如矮化、无分蘖或多分蘖、结实率降低、粒型或穗型改变、小穗结构改变等.利用Hm离体叶片筛选法对部分T1群体进行筛选,得到了1个变异性状与Hm抗性共分离的突变体,该突变体的变异表型为结实率比非转化对照下降约50%,每穗颖花总数比对照减少约40%,二者的总效应导致突变体单穗产量比对照约下降70%. A strategy of shotgun antisense gene silencing was used to generate a rice mutant library. A total of (1 486) transgenic rice plants were obtained from 105 independent Hygromycin(Hm) resistant calli transformed with rice antisense cDNA library, using japonica cultivar Zhonghua 11 as transformation material. A total of 335 T_0 transformants from 11 independent calli were selected randomly to test Hm resistance by leaf segments screening. The results showed that all T_0 plants tested were Hm resistant, coincident with the results of PCR analysis, indicating that no escapee existed in T_0 transformants. The result of Southern blot analysis revealed that most of the transgenic plants contained single T-DNA insertion. Some morphological variations were observed in T_0 and T_1 transgenic plants such as dwarf, non-tiller or multi-tillers, decrease of seed-setting, changes of grain or panicle shape or spikelet structure. One mutant was characterized, the mutative traits of which cosegregated with Hm resistance. The mutant displayed about 50% decrease of seed-setting rate and 40% decrease of total number of spikelets per panicle, resulting in about 70% decrease of seed production per panicle as compared with non-transgenic control.
出处 《华南农业大学学报》 CAS CSCD 北大核心 2004年第4期53-57,共5页 Journal of South China Agricultural University
基金 国家973项目(G1999011603)
关键词 反义基因 沉默策略 水稻突变体库 突变体筛选 rice (Oryza sativa L.) mutant library antisense gene silencing mutant screening
  • 相关文献

参考文献8

  • 1JEON J S, LEE S, JUNG K H, et al. T-DNA insertional mutagenesis for functional genomics in rice[J]. The Plant Journal, 2000, 22(6): 561-570.
  • 2JEON J S, AN G. Gene tagging in rice: a high throughput system for functional genomics[J]. Plant Science, 2001, 161: 211-219.
  • 3JEONG D H, AN S, KANG H G, et al. T-DNA insertional mutagenesis for activation tagging in rice[J]. Plant Physiol, 2002, 130(4): 1 636-1 644.
  • 4XUE Y, LI J, XU Z. Recent highlights of the China rice functional genomics program[J]. TRENDS in Genetics, 2003, 19:390-394.
  • 5WESLEY S V, HELLIWELL C A, SMITH N A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. The Plant Journal, 2001, 27(6): 581-590.
  • 6UPADHYAYA N M, ZHOU X R, ZHU Q-H, et al. Transgenic rice[A]. BRIEN L O, HENRY R J. Transgenic cereals[C]. St Paul, Minnesota: American Association of Cereal Chemists, 2000. 28-87.
  • 7HIEI Y, OHTA S, KOMARI T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. The Plant Journal, 1994, 6(2): 271-282.
  • 8WEIGEL D, AHN J H, BLAZQUEZ M A, et al. Activation tagging in Arabidopsis[J]. Plant Physiol, 2000, 122: 1 003-1 013.

共引文献2

同被引文献11

引证文献3

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部