期刊文献+

一类具有非线性迁移项的拟线性抛物方程解的熄灭 被引量:3

The Quenching Phenomena for a Quasilinear Parabolic Equation with a Nonlinear Convection Term
下载PDF
导出
摘要 在Rn有界域上讨论了具有非线性迁移项的平均曲率型方程ut-div[σ(| u|2) u]+b(u)· u=0的初边值问题。若初值u0∈Lq,q≥n,问题的解将在有限时刻熄灭,并且给出了解的L∞估计。 Deriving the quenching phenomena to an initial-boundary value problem in a bounded domain in the R^n for the mean curvature equation with a nonlinear convection term:u_t-div{σ(|u|~2)u}+b(u)·u=0. If u_0∈L^q,q≥n,the solution will quench in limit time.We also give the L~∞-estimate.
出处 《南京气象学院学报》 CSCD 北大核心 2004年第5期695-699,共5页 Journal of Nanjing Institute of Meteorology
基金 江苏省高校自然科学研究计划项目(02KSB170002)
关键词 平均曲率型方程 熄灭 初边值问题 mean curvature equation quench convection term
  • 相关文献

参考文献5

  • 1[2]Chen C S,Nakao M,Ohara Y.Global existence and gradient estimates for a quasilinear parabolic equation of the mean curvature type with a strong perturbation[J].Differential and Integral Equations,2001,14(1):59-74.
  • 2[3]Chen C N.Infinite time blow-up of solutions to a nonlinear parabolic problem [J].Jour Diff Eqs,1997,139(2):409-427.
  • 3[4]Nakao M,Chen C S.Global existence and gradient estimates for the quasilinear parabolic equations of m-Laplacian type with a nonlinear convection term[J].Jour Diff Eqs,2000,162(1):224-250.
  • 4[5]Alikakos N D,Rostanaian R.Gradient estimates for degenerate diffusion equations[J].Math Ann,1982,259(1):53-70.
  • 5[6]Ohara Y.L∞-estimate of solutions of some nonlinear degenerate parabolic equations[J].Non Anal TMA,1992,18(4):413-426.

同被引文献26

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2闫莉,穆春来.一类非线性抛物方程解的熄灭[J].四川大学学报(自然科学版),2006,43(3):514-516. 被引量:5
  • 3Asttita G,Marrucci G.Principles of non-Newtonian fluid echanies[M].New York:McGraw-Hill,1974.
  • 4Martinson L K,Pavlov K B.Unsteady shear flows of a conducting fluid with a theological power law[J].Masnitnaya Gidrodinamika,1971,2:50-58.
  • 5Kalashnikov A S.On a nonlinear equation appearing in the theory of non-stationary filtration[J].Trudy Seminara Petrovsk,1978,5:60-68.
  • 6Esteban J R,Vazquez J L.On the equation of turbulent filtration in onedimensional porous media[J].Nonlinear Analysis,1982,10:1303-1325.
  • 7Kalashnikov A S.The nature of the propagation of perturbations in problems of non-linear heal conduction with absorption[J].USSR Computational Mathematics and Mathematical Physics,1974,14:70-85.
  • 8Gu Y G.Necessary and sufficient conditions of extinction,of solution on parabolic equations[J].Acta Mathematica Sinica,1994,37:73-79.
  • 9Evans L C,Knerr B F.Instantaneous shrinking of the support of non-negative solutions to certain nonlinear parabolic equations and variational inequalities[J].Illinois Journal of Mathematics,1979,23:153-166.
  • 10Lair A V.Finite extinction time for solutions of nonlinear parabolic equations[j].Nonlinear Analysis,Theory,Methods & Applications,1993,21:1-8.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部