期刊文献+

基于浮点数编码的信息熵控制多种群遗传算法 被引量:1

Multi-population Genetic Algorithm Controlled by Information Entropy Based on Floating-point Coding
下载PDF
导出
摘要 在用准精确惩罚函数处理约束优化问题的基础上 ,提出一种基于浮点数编码机制的信息熵控制多种群遗传算法。通过在遗传设计中定义一个新的概率而引入信息熵概念 ,构造出一个信息熵优化模型。该模型不必完全求解 ,即可容易求出作为概率的拉格朗日乘子 ,得出空间收缩概率 ,控制各种群中解空间的收缩。信息熵的介入可使优化过程更加平稳 ,收敛更快。同时 ,该算法给出了一种科学而有效的遗传设计收敛判据。实例证明该文算法在求解约束优化问题时快速。 An improved floating-point coded genetic algorithm controlled by information entropy is presented to solve the constrained optimization problems based on the quasi-exact penalty function.The concept of information entropy is introduced into the genetic evolution by defining the probability that the optimal solution located in each population,then a multi-objective model including information entropy is constructed.By the use of this model,the probability can be straightly obtained subsequently,the coefficient of the designed space of variables narrowing down for each population can be got to control the populations searching the optimal solution.The introduction of information entropy makes the optimization procedure more stable and the convergence speed faster.Besides, a new scientific and efficient convergent rule is used in this paper. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2004年第5期453-456,共4页 Journal of Nanjing University of Science and Technology
基金 国家 973项目 国家自然科学基金 (1 0 2 72 0 30 )
关键词 遗传算法 准精确惩罚函数 信息熵 genetic algorithm quasi-exact penalty function informational entropy
  • 相关文献

参考文献5

二级参考文献6

共引文献47

同被引文献9

  • 1董颖,刘欢杰,许宝栋,唐加福.一种基于实数编码的改进遗传算法[J].东北大学学报(自然科学版),2005,26(4):321-323. 被引量:19
  • 2任子武,伞冶.实数遗传算法的改进及性能研究[J].电子学报,2007,35(2):269-274. 被引量:42
  • 3Sahab M G,Ashour A F,Toropov V V.A hybrid genetic algorithm for reinforced concrete flat slab buildings[J].Computers and Structures,2005,83 (8 -9):551 -559.
  • 4Tam S M,Cheung K C.Genetic algorithm based defect identification system[J].Expert Systems with Applications,2000,18 (1):17 -25.
  • 5Reid D J.Genetic algorithms in constrained optimization[J].Mathematical and Computer Modelling,1996,23 (5):87-111.
  • 6Ferentinos K P,Albright L D.Optimal design of plant lighting system by genetic algorithms[J].Engineering Applications of Artificial Intelligence,2005,18 (4):473-484.
  • 7Wang Hsiaofan,Wu Kuangyao.Hybrid genetic algorithm for optimization problems with permutation property[J].Computers and Operations Research,2004,31 (14):2453 -2471.
  • 8Riechmann T.Genetic algorithm learning and evolutionary games[J].Journal of Economic Dynamics and Control,2001,25 (6-7):1 019-1 037.
  • 9Hansen J V.Genetic search methods in air traffic control[J].Computers and Operations Research,2004,31 (3):445 -459.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部