摘要
独立成分分析是解决盲源分离问题的一种有效工具,但ICA具有伸缩(dilation)与排序(permutation)的不确定性的本质特征。本文利用一些约束条件,采用Lagrange乘子法并结合简单的投影方法,可以以特定的形式来进行独立成分的排序,并且可以在信号分离过程中规范化解混矩阵(demixingmatrix),能够系统地减轻ICA对于伸缩与排序的不确定性。仿真结果证实了算法的有效性。
As an important technique, independent component analysis (ICA) has been widely applied to blind source separation. But ICA has an inherent indeterminacy on dilation and permutation. In this paper, some constraints can be introduced into ICA, then projection methods and Lagrange multiplier methods are used to order the independent components in a specific manner and normalize the demixing matrix in the signal separation procedure. This can systematically eliminate the indeterminacy of ICA on permutation and dilation. The validity of the algorithms are confirmed by the experiments and results.
出处
《运筹与管理》
CSCD
2004年第5期1-6,共6页
Operations Research and Management Science
基金
国家科技部973前期专项(2001CCA00700)
国家自然科学基金资助项目(90103033
30170321)
教育部重大基金资助项目(KP0302)
关键词
运筹学
独立成分分析
LAGRANGE乘子法
投影方法
约束独立成分分析
operational research
independent component analysis
Lagrange multiplier method
projection method
constrained independent component analysis