期刊文献+

基于投影方法的约束独立成分分析

Constrained Independent Component Analysis Based on Projection Methods
下载PDF
导出
摘要 独立成分分析是解决盲源分离问题的一种有效工具,但ICA具有伸缩(dilation)与排序(permutation)的不确定性的本质特征。本文利用一些约束条件,采用Lagrange乘子法并结合简单的投影方法,可以以特定的形式来进行独立成分的排序,并且可以在信号分离过程中规范化解混矩阵(demixingmatrix),能够系统地减轻ICA对于伸缩与排序的不确定性。仿真结果证实了算法的有效性。 As an important technique, independent component analysis (ICA) has been widely applied to blind source separation. But ICA has an inherent indeterminacy on dilation and permutation. In this paper, some constraints can be introduced into ICA, then projection methods and Lagrange multiplier methods are used to order the independent components in a specific manner and normalize the demixing matrix in the signal separation procedure. This can systematically eliminate the indeterminacy of ICA on permutation and dilation. The validity of the algorithms are confirmed by the experiments and results.
出处 《运筹与管理》 CSCD 2004年第5期1-6,共6页 Operations Research and Management Science
基金 国家科技部973前期专项(2001CCA00700) 国家自然科学基金资助项目(90103033 30170321) 教育部重大基金资助项目(KP0302)
关键词 运筹学 独立成分分析 LAGRANGE乘子法 投影方法 约束独立成分分析 operational research independent component analysis Lagrange multiplier method projection method constrained independent component analysis
  • 相关文献

参考文献9

  • 1Jutten C, Herault J. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991,24:1-10.
  • 2Comon P. Independent component analysis: A new concept[J]. Signal Processing, 1994,36:287-314.
  • 3Lee T, Girolami M, Sejnowski T. Independent component analysis using an extended informax algorithm for mixed sub-gaussian and super-gaussian sources[J]. Neural Computation, 1999,11(2):417-441.
  • 4Bell A, Sejnowski T. An information-maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7:1129-1159.
  • 5Amari S, Chchocki A, Yang H. A new learning algorithm for blind signal separation[A]. In Advances in Neural Information Processing Systems 8[C]. MIT Press, 1996:757-763.
  • 6Hyv?rinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Networks, 2000,13:411-430.
  • 7Shi Z, Tang H, Tang Y. A new fixed-point algorithm for independent component analysis[J]. Neurocomputing, 2004,56:467-473.
  • 8Lu Wei, Rajapakse Jagath C. Constrained Independent Component Analysis[A]. In Advances in Neural Information Processing Systems 13 (NIPS2000)[C]. MIT Press, 2000.570-576.
  • 9Amari S. Natural Gradient Works Efficiently in Learning[J]. Neural Computation, 1998,10:251-276.
  • 1谌秋辉,陈翰麟.A NOTE ON FINITE ELEMENT WAVELETS[J].Acta Mathematicae Applicatae Sinica,2001,17(4):517-525.
  • 2K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.THE CKM QUARK-MIXING MATRIX[J].Chinese Physics C,2014,38(9):214-222.
  • 3A. Ceccucci,Z. Ligeti,Y. Sakai.THE CKM QUARK-MIXING MATRIX[J].Chinese Physics C,2016,40(10):224-232.
  • 4Zhou Xiaohui Wang Gang Wang Baoqin.AN ALGORITHM FOR CONSTRUCTING ORTHOGONAL ARMLET MULTI-WAVELETS WITH MULTIPLICITY r AND DILATION FACTOR a[J].Journal of Electronics(China),2011,28(4):643-651. 被引量:1
  • 5陈晓漫.THE SPECTRUM OF CONTRACTIVE OPERATORS ON π_k[J].Chinese Annals of Mathematics,Series B,1989,10(4):480-485.
  • 6严绍宗.UNITARY DILATION OF AN OPERATOR[J].Chinese Science Bulletin,1980,25(6):462-465.
  • 7徐善羡,荆继良.The energy of Einstein-Maxwell dilation-axion black hole in the teleparallel geometry[J].Chinese Physics B,2005,14(12):2415-2420.
  • 8吕磊,王雯宇,熊兆华.Parameterization for Neutrino Mixing Matrix with Deviated Unitarity[J].Chinese Physics Letters,2009,26(8):58-61.
  • 9杨守志,沈延锋,李尤发.A CLASS OF COMPACTLY SUPPORTED ORTHOGONAL SYMMETRIC COMPLEX WAVELETS WITH DILATION FACTOR 3[J].Acta Mathematica Scientia,2012,32(4):1415-1425. 被引量:1
  • 10刘接胜,黄道平,李德禄.基于独立成分分析和回归分析的人脸识别方法研究[J].福建电脑,2008,24(6):100-101.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部