期刊文献+

新型高阶Boussinesq水波方程 被引量:5

New high-order Boussinesq equations for water wave
下载PDF
导出
摘要 从经典的Boussinesq方程出发,引入两个参数并对方程中的部分项进行替换,通过严格的数学推导给出量级为O(εμ2)的高阶非线性项,得到一种新型的高阶Boussinesq方程。该方程的色散关系比经典Boussinesq方程提高了一阶,变浅作用性能也得到了改善,方程的适用范围由浅水达到中等水深。利用Crank Nicloson格式的有限差分法对方程进行数值模型在一维方向上进行离散计算,建立了高阶Boussinesq方程的数值模型。为验证数值模型的正确性,将数值计算结果与Zou等(2001)的物模试验结果以及Beji与Nadaoka方程的数值结果进行对比,本文的数值结果与试验结果吻合程度较好,表明本文方程可适于模拟变水深下的波浪场数值模拟。 Two parameters for improving the dispersion precision are introduced into the classical Boussinesq equations and to strictly derive the high-order nonlinear terms by mathematical method. On this basis a new type high-order Boussinesq equations is deduced. Comparing with the classical Boussinesq equations the new equations possesses better linear dispersion characteristic and the linear shoal characteristic is improved, so that the Boussinesq equations can be applied to describe the wave action in shallow water and moderate depth water. Furthermore,the finite differential method with Crank-Nicloson format is applied to numerically calculate the 1-D mathematical model and to establish the numerical model for high-order Boussinesq equations. The comparison of the calculation results shows that the new method gives better agreement with experimental data than other methods.
出处 《水利学报》 EI CSCD 北大核心 2004年第10期83-88,共6页 Journal of Hydraulic Engineering
关键词 色散性 变浅作用 非线性 数值计算 Boussinesq equation water wave dispersion linear shoaling characteristic nonlinearity numerical model
  • 相关文献

参考文献10

  • 1Peregrine D H.Long waves on a beach[J].J.Fluid Mech,1967,27(4):815-827.
  • 2Witting J M.A unified model for the evolution of nonlinear water waves[J].J.Comp.Phys,1984,56:203-236.
  • 3Beji S,Nadaoka K.A formal derivation and numerical model of the improved Boussinesq Equations for varying detph[J].Ocean Eng,1996,23(8):691-704.
  • 4Nwogu O.An alternative form of the Boussinesq Equations for near shore wave propagation[J].J.Wtrwy.,Port,Coast.and Oc.Engrg.,1993,119(6):618-638.
  • 5Hermming A,Schaffer,Per A Madsen.Further enhancements of Boussinesq-type Equations[J].Coastal Eng.,1995,26:1-14.
  • 6Li Y S,Liu S X,Yu Y X,Lai G Z.Numerical modeling of Boussinesq Equations by finite element method[J].Coastal Eng.,1999,37:97-122.
  • 7Wei G,Kirby T.Time-dependent numerical code for extended Boussinesq Equations[J].J.Wtrwy.Port,Coast.Oc.Eng.,ASCE,1995,121(5):251-261.
  • 8Zou Shili and Xu Benhe (Received May 20, 1997,accepted August 13, 1997).NumericalmodelforsolvingBousiinesq-typeequations:comparisonandvalidation[J].Acta Oceanologica Sinica,1998,17(3):375-386. 被引量:11
  • 9邹志利,张晓莉.Numerical Models of Higher-Order Boussinesq Equations and Comparisons with Laboratory Measurement[J].China Ocean Engineering,2001,16(2):229-240. 被引量:5
  • 10Woo S B,Liu PL F.A Petrov-Galerkin finite element model for one-dimensional fully non-linear and weakly dispersive wave propagation[J].Int.J.for Numerical methods in Fluids,2001,37:541-575.

二级参考文献13

  • 1[1]Boussinesq, J., 1872. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liq uid contained in this canal, Journal de Mathenatiquespures et appliquees, 17 (2): 55~108.
  • 2[2]Gobbi, M. F., Kennedy, A. B. and Kirby, J. T., 1998. A comparison of higher-order Boussinesq and local polynomial ap proximation models, Proc. 26th Intl. Conf. Coastal Eng., Copehagen.
  • 3[3]Gobbi, M. and Kirby, J. T., 1999. Wave evolution over submerged sill: test of a high-order Boussinesq model, Coastal Engineering, 37, 57~96.
  • 4[4]Madsen, P. A., Murray, R. and Sorensen, O. R., 1991. i new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Engineering, 15,371~388.
  • 5[5]Madsen, P. A. and Soresen, O. R., 1992. A new form of Boussinesq equaitons with improved linear dispersion characteristics, Part 2, A slowly-varying bathymetry, Coastal Engineering, 18, 183~204.
  • 6[6]Madsen, P. A. and Schaffer, H. A., 1998. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis, Proceeding of Royal Society, 356, 3123~3184.
  • 7[7]Nwogu, O., 1993. Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterway, Port, Coasta., Ocean Eng., 119, 618~638.
  • 8[8]Ohyama, T., Kioka, W. and Tada, A., 1995. Applicability of numerical models to nonlinear dispersive waves, coastal En gineering 24, 297~313.
  • 9[9]Otta, A. K. and Schaffer, H. A., 1999. Finiteamplitude analysis of some Boussinesqtype equations, Coastal Engineering, 36, 323~341.
  • 10[10]Pere grine, D. H., 1967. Long waves on a beach, J. Fluid Mech., 27, 815~827.

共引文献15

同被引文献38

  • 1QI,Peng(齐鹏),WANG,Yongxue(王永学).Hydraulic Modeling of A Curtain-Walled Dissipater by the Coupling of RANS and Boussinesq Equations[J].China Ocean Engineering,2002,17(2):201-210. 被引量:5
  • 2张岩,陶建华.二维短波方程的差分格式研究[J].水动力学研究与进展(A辑),1989,4(3):21-28. 被引量:6
  • 3刘忠波,孙昭晨.新型高阶Boussinesq水波方程的改进[J].哈尔滨工业大学学报,2006,38(4):630-632. 被引量:2
  • 4PEREGRINE D H.Long waves on a beach[J].J Fluid Mech,1967,27(4):815-827.
  • 5MADSEN P A.SRENSEN O R.A new form of the Boussinesq Equations with improved linear dispersion characteristics,Part 2.A slowly-varying bathymetry[J].Coastal Eng,1992,18:183-204.
  • 6NWOGU O.An alternative form of the Boussinesq Equations for near shore wave propagation[J].J Wtrwy,Port,Coast and Oc Engrg,1993,119 (6):618-638.
  • 7WEI G,KIRBY J T.Time dependent numerical code for extended Boussinesq Equations[J].J Wtrwy Port,Coast Oc Eng,1995,121(5):251-261.
  • 8ZOU Z L.Higher order Boussinesq equations[J].Ocean Eng,1999,26:767-792.
  • 9PEREGRINE D H.Long waves on a beach[ J ].J Fluid Mech,1967,27(4):815 -827.
  • 10Nwogu,O.An alternative form of the Boussinesq Equations for near shore wave propagation[ J ].J Wtrwy,Port,Coast.and Oc.Engrg.,1993,119 (6):618 -638.

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部