期刊文献+

模糊入侵识别引擎的研究与设计 被引量:1

Design of Fussy Intrusion Recognition Engine
下载PDF
导出
摘要 模糊入侵识别引擎是一个用模糊理论来针对计算机网络的恶意活动的网络入侵检测系统。本文将模糊理论中知识的模糊表示、特征的模糊匹配及模糊推理用于入侵检测中,提出了一种新的模糊入侵识别引肇(IFIRE)。以具有模糊属性的特征元素为最小成份,组成模糊特征因子、模糊特征表达式及模糊特征树来描述具有模糊特性入侵活动特征的知识体系;通过特征因子的相似度计算进行特征的模糊匹配;最后,用基于产生式规则的模糊推理进行检测决策。该方法能有效地降低误报率及漏报率。 The Fuzzy Intrusion Recognition Engine (FIRE) is a network intrusion detection system that uses fuzzy systems to assess malicious activity against computer networks. This paper originally explores some fuzzy theories, including fuzzy knowledge expression, fuzzy match and fuzzy inference, geares towards intrusion detection. The model of FIRE based on above fuzzy theories is built and discussed in detail. The intrusion features are presented by fuzzy elements,fuzzy factors,fuzzy expression and fuzzy trees. Fuzzy match is carried out by calculate of resemblance. Finally decisions are made by fuzzy inference. These methods can effectively improve the false negative rate and false positive rate of IDS.
出处 《计算机科学》 CSCD 北大核心 2004年第7期87-90,共4页 Computer Science
基金 国防科工委应用基础基金(NO.J1300D004) 江苏省自然科学基金(NO.BK2001055) 江苏省南通市青年学术带头人带课题进修计划(NO.Z3008)
关键词 模糊入侵识别引擎 模糊理论 网络入侵检测系统 IFIRE 特征因子 产生式规则 Fuzzy,Intrusion detection,Features match,Inference
  • 相关文献

参考文献5

  • 1张琨,徐永红,王珩,刘凤玉.基于免疫学的入侵检测系统模型[J].南京理工大学学报,2002,26(4):337-340. 被引量:11
  • 2[2]Bridges S M,Vaughn R B, FUZZY DATA MINING AND GENETIC ALGORITHMS APPLIED TO INTRUSION DETECTION. http:∥www. cs. msstate. edu/~ bridges/papers/nissc2000. pdf
  • 3[3]Dickerson J E,Dickerson J A. Dickerson. 2000. Fuzzy network profiling for intrusion detection [J]. In: Proc. of NAIFIPS 2000. 301~306
  • 4[4]Luo Jianxiong, Bridges S M, Vaughn R B. Jr. Fuzzy Frequent Episodes for Real-Time. http:∥www. cs. msstate. edu/~bridges/papers/fuzzieee-2001. pdf
  • 5[5]何新贵.模糊知识处理的理论与技术[M].国防工业出版社,1999.63~65

二级参考文献1

共引文献10

同被引文献7

  • 1谢丰,孟庆发.蠕虫预警技术研究与进展[J].计算机应用研究,2006,23(10):14-16. 被引量:5
  • 2张新宇,卿斯汉,李琦,李大治,何朝辉.一种基于本地网络的蠕虫协同检测方法[J].软件学报,2007,18(2):412-421. 被引量:25
  • 3Toosi A N,Kahani M.A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers[J].Computer Communications,2007,30(10):2201-2212.
  • 4Bridges S M,Vaughn R B.Fuzzy data mining and genetic algorithms applied to intrusion detection[C] //Proceedings 23rd National Information Systems Security Conference.Baltimore,Oct.16-19,2000:13-31.
  • 5Lemos R.Fast-spreading code is weapon of choice for net vandals[EB/OL].(2001-03-15)[2009-08-10].http://news.comcom/Year+of+the+Worm/2009-1001_3254061.html?tag=st.rn#.
  • 6国家计算机网络入侵防范中心.国家计算机网络入侵防范中心网络安全分析报告(2004年1-5月)[EB/OL].(2004-06-03)[2009-08-10].http://www.cert.org.cn/articles/statistic/common/2004060321713.shtml.
  • 7Ellis D,Aiken J,Attwood K,et al.A Behavioral approach to worm detection[C] //Proc,of ACM Workshop on Rapid Malcode (WORM),New York:ACM Press,2004:43-53.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部