期刊文献+

关联维数的并行求解算法 被引量:1

The Research of Parallel Correlation Dimension Calculation
下载PDF
导出
摘要 关联维数的求解是分形理论中的一个重要问题,标准算法由于其巨大的计算量,不能满足实时任务的需要。过去的改进算法集中在串行地减少求解多个关联维数时的重复计算量,并未从根本上降低O(N^2)次的向量距离计算、距离比较和求和次数.其应用范围和性能改善程度是有限的。本文给出了两个并行算法:基于PRAM模型的花费O(N^2/p+logp)时间p个处理机的算法,和基于LARPBS模型的花费O(N^2/p)时间p个处理机的算法。相对纯理论的PRAM算法,LARPBS算法是实际可行的,它是目前时间复杂度最低的算法,并且是最优可扩展和成本最优的。 The calculation of correlation dimension is a key problem of the fractal dimension. The standard algorithm requires O(N^2) computations. The previous improvement methods endeavor to sequentially reduce redundant computation on condition that there are many different dimensional phase spaces. The application area and performance improvement degree are limited,e, g. ,they are not adequate for real time tasks. This paper presents a O(N^2/p+1ogp) time p processors parallel PRAM algorithm and a O(N^2) time p processors parallel LARPBS algorithm. The speedup of parallel algorithms is efficient. Compared with the PRAM algorithm, The LARPBS algorithm is practical. It is optimally scalable and cost optimal. To our best knowledge, it is the fastest algorithm for correlation dimension calculation so far.
出处 《计算机科学》 CSCD 北大核心 2004年第7期169-170,F004,共3页 Computer Science
基金 国家自然科学基金(No.60273075)
关键词 关联维数 并行算法 分形理论 PRAM模型 LARPBS模型 Correlation dimension, Parallel, Algorithm
  • 相关文献

参考文献14

  • 1[1]Mandelbort B B. Fractal: Form, Chance and Dimension. San Franciso: Freeman, 1997
  • 2[2]Addison PA. Fractals and Chaos: an illustrated course. London:Institute of Physics Publishing, 1997
  • 3[3]Moon Chaotic F C. Vibrations: An Introduction for Applied Scientists and Engineers. New York: Wiley, 1987
  • 4张涛,文学章.吸引子维数计算的几点改进[J].浙江大学学报(自然科学版),1993,27(5):673-679. 被引量:8
  • 5[5]Wang Ying,Han Yueqin. Fractal Dimension Studying of Random Sequence. In :Proc. ICSP'96,Beijing : ICSP, 1996. 257~260
  • 6周越,杨杰.求解关联维数的快速算法研究[J].电子学报,2002,30(10):1526-1529. 被引量:9
  • 7[7]Theiler J. Efficient Algorithm for Estimating the correlation dimension from a set of Discrete points. Phys. Rev. , 1987,36(9):4456~4462
  • 8[8]Trahan J L,Pan Y. Optimally scaling permutation routing on reconfigurable linear arrays with optical buses. Journal of Parallel and Distributed Compuaing,2000,60:1125~1136
  • 9[9]Pan Y, Hamdi M. Quicksort on a linear array with a reconfigurable pipelined bus system. In:Proc. IEEE int'l Symp. Parallel Architectures ,Algorithms ,and Networks, 1996. 313~319
  • 10[10]Li Keqin,Pan Y. Fast and processor efficient parallel matrix multiplication algorithms on a linear array with a reconfigurable pipelined bus systems. IEEE Trans. On Parallel and Distributed Systems, 1998,9(8): 705~719

二级参考文献5

  • 1张涛,文学章.吸引子维数计算的几点改进[J].浙江大学学报(自然科学版),1993,27(5):673-679. 被引量:8
  • 2魏中磊,中国科学.A,1991年
  • 3徐京华,科学杂志,1989年,42卷,4期
  • 4Wang Ying,Han Yueqiu,Mao Erke.Fractal Dimension Studying of Random Sequence [A].Proc.ICSP'96 [C].Beijing:ICSP,1996.257-260.
  • 5James Theiler.Efficient Algorithm for Estimating the Correlation Dimension from a Set of Discrete Points [J].Phys.Rev.1987,36(9):4456-4462.

共引文献15

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部