摘要
The process of penetrating into granite was simulated by using program LS-DYNA3D. The granite was represented by the isotropic elastic-plastic model with failure criterion and the projectile was modeled by rigid model. The depth of penetration from simulations is identical with experiments. Penetration deceleration vs striking velocity was acquired at the same time, which can assist in the design of penetration weapons with payload and fuse. Through numerical simulation, that material model is considered with straightforward physical meaning, (a few) parameters which can be determined easily are more practical for engineering calculation along with (experiments.).
The process of penetrating into granite was simulated by using program LS-DYNA3D. The granite was represented by the isotropic elastic-plastic model with failure criterion and the projectile was modeled by rigid model. The depth of penetration from simulations is identical with experiments. Penetration deceleration vs striking velocity was acquired at the same time, which can assist in the design of penetration weapons with payload and fuse. Through numerical simulation, that material model is considered with straightforward physical meaning, (a few) parameters which can be determined easily are more practical for engineering calculation along with (experiments.).